Math, asked by ΙΙïƚȥΑαɾყαɳΙΙ, 7 hours ago

\huge \mathcal \red{Question}

Attachments:

Answers

Answered by OoAryanKingoO78
4

Answer:

\dag \sf \red{x^y = e^x-^y}

Question no. 1

  • Find dy/dx at x = 1

Answer :-

taking log both sides

logx^y=loge^x-y

ylogx=x-yloge

differentiate both sides w.r.t x

1/y dy/DX=1-dy/DX (loge=1)

1/y dy/DX +dy/DX =1

dy/DX(1/y+1)=1

dy/DX(1+y/y)=1

dy/DX=

y/1+y answer

______________________

Question no. 2

  • Find d²y/d²x at x = 1

Answer :-

Given:

          x^y = e^{x-y}

To Find:

         \frac{dy}{dx}  = \frac{ log x}{(1 + log x)^2}

Solution:

      ⇒           x^y = e^{x-y}

taking log on both sides

      ⇒       log(x^y )= log( e^{x-y})

      ⇒      (y) log \ x = (x-y) log(e )

      ⇒       y log\ x = x - y                                  [ log \ e =1 ]

      ⇒     y \ log\ x + y  = x

      ⇒     y ( log x + 1 ) = x

      ⇒      y = \frac{x}{1 + log \ x}

On differentiating both sides with respect to x

 ⇒          

\frac{dy}{dx}  = \frac{(1+ log \ x) \frac{d}{dx} (x)- x \frac{d}{dx} (1+log \ x)}{(1+ log \ x)^2}

 ⇒          \frac{dy}{dx} = \frac{1 + log \ x - (x) \frac{1}{x}  }{(1 + log \ x)^2}

 ⇒          \frac{dy}{dx} = \frac{1 + log \ x - 1  }{(1 + log \ x)^2}

 ⇒          \frac{dy}{dx}  = \frac{ log x}{(1 + log x)^2}

Hence proved✓

________________________

Answered by Itzintellectual
1

Step-by-step explanation:

Solution:

⇒ (y) log \ x = (x-y) log(e )(y)log x=(x−y)log(e)

Similar questions