Math, asked by Najirpirjade, 5 months ago

\huge\mathcal\red{Question}
Please answer this question sincerely and no spamming ❌❌
x =  \frac{1}{3} (74\% \: of \: 81) \\ y =  \frac{1}{4} (27\% \: of \: 46) \\ find \: x - 3y

Those who answer it correctly I will surely follow them but answer should be correct... ​

Answers

Answered by MrImpeccable
7

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  • x = \dfrac {1}{3} \times (74\% \: of \: 81) \\
  • y = \dfrac {1}{4} \times (27\% \: of \: 46)

 \\

To find:

  •  x - 3y

 \\

Solution:

 x = \dfrac{1}{3} \times (74\% \: of \: 81) \\ \\ \implies x = \dfrac{1}{3} \times \left(\dfrac{74}{100} * 81 \right) \\ \\ \implies x = \dfrac{1}{3\!\!\!/ _1} \times \dfrac{74}{100} \times 81\!\!\!\!/ ^{27} \\ \\ \implies x = \dfrac{74\times 27}{100} -------(1) \\ \\ </p><p>y = \dfrac{1}{4} \times (27\% \: of \: 46) \\ \\ \implies y = \dfrac{1}{4} \times \left(\dfrac{27}{100} * 46 \right) \\ \\ \implies y = \dfrac{1}{4\!\!\!/ _2} \times \dfrac{27}{100} * 46\!\!\!/ ^{23} \\ \\ \implies y = \dfrac{27\times 23}{200} -------(2) \\ \\</p><p>So, \\ x - 3y = \dfrac{74\times 27}{100} - 3\left( \dfrac{27\times 23}{200} \right) \\ \\ \implies x - 3y = \dfrac{2*74*27}{200} - \dfrac{3*27*23}{200} \\ \\ \implies x - 3y = \dfrac{2*27*74 - 3*27*23}{200} \\ \\ \implies x - 3y = 27\times \dfrac{2*74 - 3*23}{200} \\ \\ \implies x - 3y = 27\times \dfrac{148-69}{200} \\ \\ \implies x - 3y = 27\times \dfrac{79}{200} \\ \\ \implies x - 3y = \dfrac{2133}{200} \\ \\ \implies x - 3y = \dfrac{1066.5}{100} \\ \\ \implies  \bold {x - 3y = 10.665 } \\ \\ \\ Hope\:It\:Helps!!!!!!

Answered by Anonymous
2

Answer:

yeh lo ji.

Step-by-step explanation:

The word book comes from Old English “bōc” which in its turn comes from a Germanic root “*bōk-“, which means “beech” – as in the beech tree.

Attachments:
Similar questions