If t₁ + t₂ + t₃ = -t₁t₂t₃ , Then orthocentre of the triangle formed by the points [ at₁t₂ , a(t₁+t₂) ] , [at₂t₃ , a(t₂+t₃) ] , [at₃t₁ , a(t₃+t₁) ] lies on
1] (a,0)
2] (-a,0)
3] (0,a)
4] (0,-a)
(Question related to concurrency of lines topic in coordinate geometry .Copied answers and spammers will be reported)
Answers
Answer:
Let ABC be the triangle formed by the points A [ at₁t₂ , a(t₁+t₂) ] , B [at₂t₃ , a(t₂+t₃) ] , C [at₃t₁ , a(t₃+t₁) ]
NOW slope of BC
= [a(t₂+t₃) - a(t₃+t₁) ] / [at₂t₃ - at₃t₁ ]
= [a(t₂ - t₁) ] / [t₃ a(t₂ - t₁) ]
= 1/t₃
Similarly slope of AC = 1/t₁
Therefore the equation of the line through A perpendicular to BC is
[ y - a(t₁+t₂) ] = - t₃ [ x - at₁t₂ ] - - - - - - - - (1)
Again the equation of the line through B perpendicular to AC is
[ y - a(t₂+t₃) ] = - t₁ [ x - at₂t₃ ] - - - - - - - (2)
Now Equation (1) - Equation (2) gives
[ y - a(t₁+t₂) ] - [ y - a(t₂+t₃) ] = - t₃ [ x - at₁t₂ ] + t₁ [ x - at₂t₃ ]
- a(t₁+t₂) + a(t₂+t₃) ] = - x t₃ - at₁t₂ t₃ + x t₁ + at₁t₂ t₃
a(t₃ - t₁) = - x(t₃ - t₁)
x = a
From Equation (1)
[ y - a(t₁+t₂) ] = - t₃ [ a - at₁t₂ ]
[ y - a(t₁+t₂) ] = - at₃ + at₁t₂ t₃
y = a ( t₁ + t₂ + t₃ + t₁t₂t₃) = 0
Now The point of intersection of Equation (1) and Equation (2) is the required orthocentre
So the required orthocentre is (a, 0)
Please Mark it Brainlist
Answer: