[tex]\huge{\mathcal{\underline{\green{QUESTION}}}}[\tex]
Roohi travels 300 km to her home partly by train and partly by bus. She takes 4 hours if she travels 60 km by train and the remaining by bus. If she travels 100 km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.
Answers
Answer:
Let the speed of the train be x km/hr and the speed of the bus is y km/hr.
So according to question and using Time=
Total distance = 300 km
Roohi travels 60 km by train and 300−60=240 by bus in 4 minute
and 100 km by train, 300−100=200 by bus, and takes 10 minutes
Hence the speed of the train is 60 km/hr and the speed of the bus is 80 km/hr.
Answer:
Let the speed of the train be x km/hr and the speed of the bus is y km/hr.
So according to question and using Time= \frac{distane}{speed}
speed
distane
Total distance = 300 km
Roohi travels 60 km by train and 300−60=240 by bus in 4 minute
\frac{60}{x} + \frac{240}{y} = 4
x
60
+
y
240
=4
and 100 km by train, 300−100=200 by bus, and takes 10 minutes
\frac{100}{x} + \frac{200}{y} = 4 + \frac{10}{60} = 100x
x
100
+
y
200
=4+
60
10
=100x
Hence the speed of the train is 60 km/hr and the speed of the bus is 80 km/hr.