Math, asked by IILoveYouII, 3 months ago

\huge \mathfrak \color{green}{question} :

Prove that :
sin²6x-sin²4x = sin2xsin10x.​

Answers

Answered by abdulbasith27
0

Answer:

={2cos(6x+4x)/2.sin(6x-4x)/2}{2sin(6x+4x)/2.cos(6x-4x)/2}

={2cos5x.sinx}{2sin5x.cosx}

={2sin5x.cos5x}{2sinx.cosx}

Use the formula,

sin2A = 2sinA.cosA

= sin2(5x).sin2(x)

= sin10x.sin2x

mark me as the brainliest

Step-by-step explanation:

chatt inn inssta i_joker_zxz

Answered by TheMist
107

\huge \sf \color{red} \underline{Solution} :

To prove :

\bigstar \sf sin^26x-sin^24x = sin2xsin10x

Solving L.H.S

\colorbox{skyblue}{\sf (a^2-b^2)=(a+b)(a-b)}

 \\ \sf  (sin6x-sin4x)(sin6x+sin4x)

 \\ \sf [2cos(\frac{6x+4x}{2})sin(\frac{6x-4x}{2}) ] [2sin(\frac{6x+4x}{2})Cos(\frac{6x-4x}{2})] \\ \sf \implies  [2cos(5x)sin(x)][2sin5xCosx] \\ \sf \implies [2sin5xCos5x][2sinxCosx] \\ \sf \implies Sin10xSin2x

= R.H.S

\huge \underline{ Hence \ \ \ proved}

\color{red}━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \sf \color{brown}{\underbrace{Formulas \: used}}

 \sf \dag \color{red} {\sf Sinx+Siny = 2sin(\frac{x+y}{2})Cos(\frac{x-y}{2})}

 \dag \sf \color{red}{\sf Sinx-Siny=2Cos(\frac{x+y}{2})Sin(\frac{x-y}{2})}

\sf \dag \color{red}{Sin2x = 2SinxCosx}

\color{red}━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions