Math, asked by IILoveYouII, 4 months ago

\huge \mathfrak \color{green}{question} :

Prove that :
sin²6x-sin²4x = sin2xsin10x.​​

Answers

Answered by TheMist
139

\huge \sf \color{red} \underline{Solution} :

To prove :

\bigstar \sf sin^26x-sin^24x = sin2xsin10x

Solving L.H.S

\color{red} \bigstar \boxed{\sf (a^2-b^2)=(a+b)(a-b)}

\\ \sf (sin6x-sin4x)(sin6x+sin4x)

\\ \sf [2cos(\frac{6x+4x}{2})sin(\frac{6x-4x}{2}) ] [2sin(\frac{6x+4x}{2})Cos(\frac{6x-4x}{2})] \\ \sf \implies [2cos(5x)sin(x)][2sin5xCosx] \\ \sf \implies [2sin5xCos5x][2sinxCosx] \\ \sf \implies Sin10xSin2x

= R.H.S

\huge \underline{ Hence \ \ \ proved}

\color{red}━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \sf \color{brown}{\underbrace{Formulas \: used}}

\sf \dag \color{red} {\sf Sinx+Siny = 2sin(\frac{x+y}{2})Cos(\frac{x-y}{2})}

\dag \sf \color{red}{\sf Sinx-Siny=2Cos(\frac{x+y}{2})Sin(\frac{x-y}{2})}

\sf \dag \color{red}{Sin2x = 2SinxCosx}

\color{red}━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by gk2721934
1

Answer:

:

To prove :

\bigstar \sf sin^26x-sin^24x = sin2xsin10x★sin

2

6x−sin

2

4x=sin2xsin10x

Solving L.H.S

\color{red} \bigstar \boxed{\sf (a^2-b^2)=(a+b)(a-b)}★

\begin{gathered}\\ \sf (sin6x-sin4x)(sin6x+sin4x) \end{gathered} </p><p>(sin6x−sin4x)(sin6x+sin4x)

\begin{gathered}\\ \sf [2cos(\frac{6x+4x}{2})sin(\frac{6x-4x}{2}) ] [2sin(\frac{6x+4x}{2})Cos(\frac{6x-4x}{2})] \\ \sf \implies [2cos(5x)sin(x)][2sin5xCosx] \\ \sf \implies [2sin5xCos5x][2sinxCosx] \\ \sf \implies Sin10xSin2x\end{gathered}

= R.H.S

\huge \underline{ Hence \ \ \ proved}

Hence proved

\color{red}━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \sf \color{brown}{\underbrace{Formulas \: used}}

Formulasused

\sf \dag \color{red} {\sf Sinx+Siny = 2sin(\frac{x+y}{2})Cos(\frac{x-y}{2})}†Sinx+Siny=2sin(

2

x+y

)Cos(

2

x−y

)

\dag \sf \color{red}{\sf Sinx-Siny=2Cos(\frac{x+y}{2})Sin(\frac{x-y}{2})}†Sinx−Siny=2Cos( </p><p>2</p><p>x+y[)tex]</p><p>	</p><p> )Sin( </p><p>2</p><p>x−y</p><p>	</p><p> )</p><p></p><p>[tex]\sf \dag \color{red}{Sin2x = 2SinxCosx}†Sin2x=2SinxCosx

Similar questions