From an aeroplane vertically above a straight horizontal road, the angle of
depression of two consecutive kilometer stones on opposite sides of the aero
plane are observed to be 60° and 30°. Show that height of aero plane above the
road is km.
[ Class 10 ]
✖ Kindly don't spam ✖
Answers
Hey mate,
Let B and C be the two consecutive mile stones.
∴ BC = BD + CD = 1miles
Let the height of the aeroplane AD = Hmiles
⇒ In △ABD , tanα= BDAD ........ tan (Θ) =
Opposite
---------------
Adjacent
⇒ tanα= BD
----
h
⇒ BD = tanα
------ -------- ( 1 )
h
⇒ In △ACD, tan β = CD
----
AD
⇒ tanβ = CD
----- .......... tan(Θ) = Adjacent
-----------
Opposite
⇒ CD = tanβ
----- -------- ( 2 )
h
⇒ BC = BD + CD = h h
----- + ------
tanα tanα
⇒ BC = h 1 1
( ----- + ------ )
tanα tanα
⇒ 1 = h. tan α tan b
( ---------+-------- )
tan α tan b
∴ h = tan α tan b
( ----- + ------ )
tan a + tan b
⇒ Hence, height of the aeroplane is
tan α tan b
( ----- + ------ )
tan a + tan b