Math, asked by Anonymous, 1 year ago


\huge\mathfrak{Heya!!!!}

In Figure ABC and DBC are two Triangles on the same base BC if a d intersect BC at O show that :-
ar∆[ABC]\ar∆[DBC]=AO\DO


No spamming⚠

Answer with proper explanation✔✔​

Answers

Answered by Anonymous
16

\underline{\underline{\bold{Question:}}}

In Figure ABC and DBC are two Triangles on the same base BC if AD intersect BC at O show that :-

\bold{\dfrac{ar\Delta ABC}{ar\Delta DBC}=\dfrac{AO}{DO}.}

\tt{Solution:}

Given :

Both triangles have a common base that is BC.

To prove :

\bold{\dfrac{ar\Delta ABC}{ar\Delta DBC}=\dfrac{AO}{DO}.}

To construct :

In Δ ABC

  • Draw AE ⊥ BC.

In ΔDBC

  • Draw DF ⊥ BC.

Proof :

In Δ AOE and ΔDOF

  • ∠AOE = ∠DOF = Vertically opposite angle.
  • ∠AEO = ∠DFO = 90°.

So ΔAOE ~ ΔDOF (AAA criteria)

\bold {\dfrac{AO}{DO}=\dfrac{OE}{OF}=\dfrac{AE}{DF}}

\boxed{\bold{Area\:of\:triangle=\dfrac{1}{2}*Base*Height}}

So

Area of triangle ABC :

\bold{=\dfrac{1}{2}*BC*AE.}

Area of triangle DBC :

\bold{=\dfrac{1}{2}*BC*DF.}

Now

\bold{\dfrac{ar\Delta ABC}{ar\Delta DBC}=\dfrac{\dfrac{1}{2}*BC*AE}{\dfrac{1}{2}*BC*DF}}\\\\\\\bold{=\dfrac{AE}{DF}=\dfrac{AO}{DO}}.\\\\\\\bold{Proved.}\\\\\\\boxed{\boxed{\bold{\dfrac{ar\Delta ABC}{ar\Delta DBC}=\dfrac{AO}{DO}.}}}


Anonymous: Tq bachche......XD❤
Anonymous: :)
sakshi7048: awesome answer
Anonymous: Thank u.
vivekkumar6115: lol bacche
Similar questions