Math, asked by Anonymous, 2 months ago

\huge \mathfrak \pink{Question.. }

Be LCM and HCF of two numbers are 4125 and 25 respectively one number is 375 find by how much is a second number less than the first??​

Answers

Answered by ShírIey
68

Given: The LCM and HCF of two numbers are 4125 and 24 respectively.

Need to find: How much is a second number less than the first?

❒ Let the first number be 375 and second number be x.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀

\star\; \boxed{\sf{\pink{Product \; of \: two \; numbers = LCM \times HCF}}}

⠀⠀⠀

Therefore,

⠀⠀⠀

:\implies\sf 375 \times x = 4125 \times 25 \\\\\\:\implies\sf x = \bigg(\dfrac{4125 \times 25}{375} \bigg) \\\\\\:\implies\sf x = \dfrac{103,125}{375} \\\\\\:\implies{\underline{\boxed{\frak{\purple{x = 275}}}}}\;\bigstar

⠀⠀⠀

As per given Condition:

⠀⠀⠀

  • How much second number is less than the first number.

Therefore,

⠀⠀⠀

:\implies\sf 375 - 275 = 100

⠀⠀⠀

\therefore{\underline{\sf{Hence,\; second\; number\; is \; less \; than \; the \: first \; number\: by\;  \bf{100 }.}}}

Answered by sudhagupta12354
68

Answer:

here is ur answer

hope it is correct..

Attachments:
Similar questions