Math, asked by Anonymous, 3 months ago

\huge{\mathfrak{\pink{☆Question ☆}}}

Choose the correct algebraic expression from the following option for the factor given in the box.

{\underline{\underline{\boxed{\sf{\red{(3x-y)(x+y)² }}}}}}

✦✧ Option✧✦
A) 3x³- 5x² y- 2xy² +y³
B) 3x³- 7x² y- xy² +3y³
C) 3x³- 7x² y- 5xy² +y³
D) 3x³- 5x² y- xy² +y³​

Answers

Answered by Anonymous
15

Given :-

  • ( 3x - y)(x + y )²

To Find :-

  • Expand it to match from the given options

Solution :-

\sf \leadsto  (3x-y)(x+y)^{2}

\sf \leadsto (3x-y)(x^{2} + 2xy +y^{2} )

\sf \leadsto 3x^{3} + 6x^{2}y + 3xy^{2} -yx^{2} - 2xy^{2} - y^{3}

\sf \leadsto 3x^{2} + 6x^{2}y + 3xy^{2} -x^{2}y - 2xy^{2} - y^{3}

\sf \leadsto 3x^{3} + 6x^{2}y - x^{2}y + 3xy^{2} - 2xy^{2} - y^{3}

\sf \leadsto 3x^{3} + 5x^{2}y + xy^{2} - y^{3}

Answered by Anonymous
14

\huge{\mathfrak{\pink{Correct\:Question♡ }}}

Simplify-:

  • {\underline{\underline{\boxed{\sf{\red{(3x-y)(x+y)² }}}}}}

\huge{\mathfrak{\blue{AnswEr ♡}}}

  • {\underline{\underline{\boxed{\sf{\red{(3x-y)(x+y)²=3x³+5x²y+xy²-y³ }}}}}}

Explanation-:

  • {\underline{\underline{\boxed{\sf{\red{(3x-y)(x+y)² }}}}}}

Now-:

  •  \sf{\implies {\large{  (3x-y)(x+y)² }}}

  •  \sf{\implies {\large{  (3x-y)(x²+2xy+y²) \:\:\:\:}}} \\\\ \sf{\large{Applying \:= (a+b)² = a² + 2ab + b²}}

  •  \sf{\implies {\large{  3x(x²+2xy+y²)-y(x²+2xy+y²) \:\:\:\:}}}

  •  \sf{\implies {\large{  3x³+6x²y+3xy²-x²y-2xy²-y³) \:\:\:\:}}}

  •  \sf{\implies {\large{  3x³+6x²y-x²y+3xy²-2xy²-y³) \:\:\:\:}}}

  •  \sf{\implies {\large{  3x³+5x²y+xy²-y³) \:\:\:\:}}}

Hence ,

  • {\underline{\underline{\boxed{\sf{\red{(3x-y)(x+y)²=3x³+5x²y+xy²-y³ }}}}}}

_________________♡___________________

Similar questions