English, asked by sir3145, 6 months ago


[tex]\huge \mathfrak \red{Question}Question

Q.1: ABCD is a quadrilateral in which AD = BC and ∠DAB = ∠CBA. Prove that

(i) ΔABD ≅ ΔBAC
(ii) BD = AC
(iii) ∠ABD = ∠BAC.​

Answers

Answered by vanshikavikal448
74

  \bold \color{green}{ \fcolorbox{blue}{purple}{required \: answer}}

\bold  \color{green}{ \underline{ \underline \red{given  \tt}}}

AD = BC

 \angle \: DAB=  \angle \: CBA

 \bold \color{green} { \underline{ \underline \red{to \: prove \tt}}}

i)∆ABD = ∆BAC

 \bold { \underline{ \underline{proof}}}

 \bold{in \:  \triangle  ABD \:  \: and \:  \triangle  BAC}

AB = AD(given)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \angle \: DAB =  \angle \: CBA(given) \\ AB= AB(common) \:  \:  \:  \:  \:  \\  \\  \bold{ \implies \triangle \: ABD  \cong \triangle \: BAC } \\ by \: SAS \: congruency \: rule

ii) BD = AD

 since, \:  \triangle \: ABD \cong \triangle \: BAC \\  \implies \: BD \:  = AC \: ( \: by \: C.P.C.T)

iii)

 \huge \bold \angle \: ABD =  \angle \: BAC

 \bold{  \underline{ \underline{proof}}}

since, \:  \triangle \: ABD \cong \triangle \: BAC \\  \implies \angle \: ABD \:  =  \angle \: BAC \: ( \: by \: C.P.C.T)

Attachments:
Answered by M24ayush
0

ndjdjdjxxncjdhdhdhdhdhdhdjdjdicjDC i

Similar questions