Math, asked by MelleDiptaBeheN, 6 months ago

\huge\mathfrak\red{Question:-}


A block is projected upward on an inclined plane of inclination 37 along the line of greatest slope of u = .5 with the velocity of 5 m/ sec. The block 1 stop at the distance of from the starting point.​

Answers

Answered by Anonymous
61

\purple{\bold{\underline{\underline{Answer:-}}}}

\green{\tt{\therefore{Distance\:travelled\:by\:block=1.25\:m}}}

\pink{\bold{\underline{\underline{Step-by-step\:explanation:-}}}}

 \green{\underline \bold{Given :}}  \\  \tt:  \implies {Initial \: velocity(u) = 5 \: m/s} \\  \\  \tt:  \implies Angle \: of \: inclination = 37 \degree \\  \\  \tt:  \implies   \: Friction \: coefficient( \mu) = 0.5 \\  \\ \red{\underline \bold{To \: Find:}}  \\  \tt:  {\implies Distance \: travelled \: by \: block = ?}

• According to the question :

 \text{Component \: of \: acceleration } \\  \tt: { \implies  Perpendicular \: component  \: to \: incline \: plane = g  \: cos \theta} \\  \\ \tt:  \implies   Parallel \: component  \: to \: incline  \:  plane = g  \: sin \theta \\  \\   \tt\circ \:  N = mg \: cos  \: \theta \\  \\  \tt \circ \: fr =  \mu N= mg \: cos \:   \theta \\  \\  \tt \circ \: Decleration \: due \: to \: friction \: force =  \mu g \: cos  \: \theta  \\  \\   \tt\because Total \: decleration = g \: sin \:  \theta +  \mu g \: cos  \: \theta \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  {v}^{2}  =  {u}^{2}  + 2as \\  \\   \tt\circ \:Final \: velocity = 0 \: m/s  \\ \\   \tt:  \implies  {0}^{2}  =  {5}^{2}  + 2 \times ( - g \: sin \: \theta  -  \mu g  \: cos  \: \theta) \times s \\  \\  \tt:  \implies  - 25 =  - 2 \times (10 \times sin  \:37 \degree + 0.5 \times 10 \times cos \: 37 \degree) \times s \\  \\  \tt:  \implies  25 =  2 \times (10 \times  \frac{3}{5}  + 0.5 \times 10 \times  \frac{4}{5} ) \times s \\  \\  \tt:  \implies 25 = 2 \times (6 + 4) \times s \\  \\  \tt:  \implies 25 = 20 \times s \\  \\  \tt:  \implies s =  \frac{25}{20}  \\  \\   \green{\tt:  \implies s = 1.25 \: m}\\\\ \green{\tt\therefore Distance\:travelled\:by\:block\:is\:\:1.25\:m}

Answered by TheRose06
8

\huge\underline{\bf \orange{AnSweR :}}

• According to the question :

Component of acceleration

⟹ Perpendicular component to incline plane = gcosθ

⟹ Parallel component to incline plane = gsinθ

N = mgcosθ

fr = μN = mgcosθ

Decleration due to friction force = μgcosθ

∵Total decleration = gsinθ + μgcosθ

As we know that

⟹ v = u 2 +2as

Final velocity = 0m/s ⟹0 2 = 5 2 +2×(−gsinθ−μgcosθ)×s

⟹ −25=−2×(10×sin37°+0.5×10×cos37°)×s

⟹ 25=2×(10× 53 +0.5×10× 54 )×s

⟹ 25=2×(6+4)×s

=> 25=20×s

⟹ s = 2025

⟹ s = 1.25m

∴Distance travelled by block is1.25m

Similar questions