Math, asked by BoyWithLuv, 10 months ago

\huge\mathfrak\red{Question:-}

Prove that :

Sin⁴Θ-Cos⁴Θ=1-2Cos²Θ

Warning:Don't spam.......xD

Nhi aata toh mat krna.

Answers

Answered by Anonymous
46

 \huge\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R}}}}

Sin⁴θ-Cos⁴θ=1-2Cos²θ

LHS=Sin⁴θ-Cos⁴θ

=(Sin²θ)²-(Cos²θ)²………………a²+b²=(a-b)(a+b)

=(Sin²θ-Cos²θ)(Sin²θ+Cos²θ)…………Sin²θ+Cos²θ=1

=(Sin²θ-Cos²θ)×1

=Sin²θ+Cos²θ-Cos²θ-Cos²θ

=Sin²θ+Cos²θ-2Cos²θ…………Sin²θ+Cos²θ=1

=1-2Cos²θ

=RHS

<marquee>♥Hence Proved♥

Answered by ItzAshleshaMane
31

This is your answer.

Hope it will help you..

Attachments:
Similar questions