Physics, asked by Mister360, 3 months ago

\Huge{\mathscr{\fcolorbox {navy}{pink}{\color {brown}{Question:-}}}}

Prove that in a parallel connection the combine resistance is the sum of the reciprocals of all resistance.

\boxed {\mathcal{\blue {\dfrac {1}{R}=\dfrac {1}{R_1}+\dfrac{1}{R_2}+\dfrac {1}{R}{3}}}

Answers

Answered by KnowtoGrow
1

Explanation:

P.F.A the proof below:

Hope you got that.

Thank You.

Attachments:
Answered by saanvigrover2007
2

\large \pmb{\sf{To \:  Prove :}}

In a parallel connection the combine resistance is the sum of the reciprocals of all resistance.

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large{\pmb{\sf{Simplified :}}}

\boxed {\pmb{\green {\dfrac {1}{R}=\dfrac {1}{R_1}+\dfrac{1}{R_2}+\dfrac {1}{R}_{3}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\pmb{\sf{Proof :}}

  {:  \mapsto{\footnotesize {\text{In a parallel circuit, Voltage (V) remains constant}}}}

 : \mapsto \footnotesize \text{But the current gets distributed :}

 \boxed{ \footnotesize{ \color{maroon}{\rm{Total  \: current = current \:  in  \: R_1 + current \:  in \:  R_2 + current  \: in \:  R_3}}}}

 \sf{Current \:  in \:  R_1} \begin{cases}  \sf{V = I_1 × R_1 } \\  \sf{ \frac{V}{R_1} = I_1} \end{cases}

\sf{Current \:  in \:  R_2} \begin{cases}  \sf{V = I_2 × R_2 } \\  \sf{ \frac{V}{R_2} = I_2} \end{cases}

\sf{Current \:  in \:  R_3} \begin{cases}  \sf{V = I_3 × R_3} \\  \sf{ \frac{V}{R_3} = I_3} \end{cases}

 \\

 { :  \mapsto\textsf {\footnotesize{Total Voltage = Total current × Total resistance }}}

{ :  \mapsto{\sf{ V = Total  \: current × Total  \: resistance }}}

 \boxed{ :  \mapsto{\sf { Total \:  current  =  \frac{V}{ Total  \: resistance} }}} \\

 \rm{Now, Total  \: Current = I_1 + I_2 + I_3}

 \sf{\frac{V}{ Total  \: resistance} = \frac{V}{R_1}   +\frac{V}{R_2}   +\frac{V}{R_3}  } \\

 \sf{ : \leadsto\frac{ \cancel{V}}{   Total  \: resistance} =  \cancel{V}  \left( \frac{1}{R_1}   +\frac{1}{R_2}   +\frac{1}{R_3} \right)}  \\

\sf{ : \leadsto\frac{ 1}{   Total  \: resistance} =  \frac{1}{R_1}   +\frac{1}{R_2}   +\frac{1}{R_3} }  \\

 :  \leadsto\boxed {\pmb{\green {\dfrac {1}{R}=\dfrac {1}{R_1}+\dfrac{1}{R_2}+\dfrac {1}{R}_{3}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\pmb{\sf{Note : }}

\rm {: \mapsto Swipe \: towards \: left\: to  \: view \: full \: equation }

\rm {: \mapsto Diagram \: in \: the\: attachment }

━━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf  \color{azure}\fcolorbox{pink}{black}{  \:    \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: @Saanvigrover2007 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:    \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:}

Attachments:
Similar questions