Math, asked by XxMrQatilxX, 1 month ago

\huge\mathtt\pink{QUESTION}

Find the Area of the Triangular field of sides 55 m, 60 m, and 65 m. Find the cost of laying the grass in the triangular field at the rate of Rs 8 per m².
_____________________________________​

Answers

Answered by llitzmisspaglill703
28

semi \: perimeter \: of \: the \: field \: is \: (s) = \\  \frac{50 + 65 + 55}{2}  =  \frac{180}{2}  = 90 \\  \\ by \: herons \: formula =  \\  \sqrt{s} (s - a)(s - b)(s - c) \\  \sqrt{90} (90 - 50)(90 - 65)(90 - 65) \\  \sqrt{90  (40)} (25)(25) \\  \sqrt{3600}  \times 25 \times 25 \\ 60 \times 5 \times 5 \\ 300 \times 5 \\  = 1500 {m }^{2}  \\ cost \: of \: lying \: grass = 1500 \times 8 = 12000

Answered by ItzYourSadness
2

Concept Used :

  • Heron's formula

Side Of The Triangles :

  • a = 55m
  • b = 60m
  • c = 65m

By Heron's Formula :

 \sf{↠} \:  \: {\underline{{\boxed{\sf{\red{  \: Area \:  of \:  triangle =  \sqrt{s(s-a)(s-b)(s-c)} }}}}}}

Where :

\sf{{➻  \: s =  \frac{a + b + c}{2}  \:  }{ \: }}

\sf{{ ➻  \: s =  \frac{55+60+65}{2} \:  }{ \: }}

\sf{{ ➻  \: s =  \red{90m}\:  }{ \: }}

ㅤㅤㅤㅤ ________________________

\bf{{ ➯  \: Area \:  of  \: triangle =\:  \sqrt{90(35)(30)(25)}  =  1537.04{m}^{2}  }{ \: }}

Now :

\sf\pink{{Cost  \: of  \: laying  \: grass = Area × 8 \:  }{ \: }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \sf{⟼} \:  \:  \:  \: \sf{{ ₹( 1537.04\times 8)  \:  }{ \: }}

 \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \sf{⟼} \:  \:  \:  \: \sf{{₹12296.32  \:  }{ \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions