Math, asked by XxItzzMrUnknownxX, 4 days ago

\huge\mathtt\pink{QUESTION}

In a right triangle ABC, right angled at B, find AC,
if (i) AB = 10 cm. BC = 24 cm
(ii) AB = 7 cm, BC = 24 cm​

Answers

Answered by PULVITZz
3

Answer:

1)26cm

2)25cm

Step-by-step explanation:

Answered by ItzzTwinklingStar
70

(i) AB = 10 cm. BC = 24 cm

Given:

  • A right triangle ABC, right angled at B .
  • (i) AB = 10 cm. BC = 24 cm .

To Find:

  • Length of AC = ?

Solution:

we know that,

★ (i) AB = 10 cm. BC = 24 cm :

by Using Pythagoras Theorem :

\\\sf\dashrightarrow{{(AC)}^{2}={(AB)}^{2}+{(BC)}^{2}}\\\\

\sf\dashrightarrow{{(AC)}^{2}={(10)}^{2}+{(24)}^{2}}\\\\

\sf\dashrightarrow{{AC}^{2}=100+576}\\\\

\sf\dashrightarrow{{AC}^{2}=676}\\\\

\sf\dashrightarrow{AC=\sqrt{676}}\\\\

\sf\dashrightarrow{AC=26\:cm}\\\\

{\bigstar{\red{\underline{\boxed {\sf{AC=26\:cm}}}}}}\\\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

(ii) AB = 7 cm, BC = 24 cm :

Given:

  • In a right triangle ABC, right angled at B, find AC,
  • (ii) AB = 7 cm, BC = 24 cm

To Find:

  • Length of AC = ?

Solution:

we know that,

(ii) AB = 7 cm, BC = 24 cm :

by Using Pythagoras Theorem :

\\\sf\dashrightarrow{{(AC)}^{2}={(AB)}^{2}+{(BC)}^{2}}\\\\

\sf\dashrightarrow{{(AC)}^{2}={(7)}^{2}+{(24)}^{2}}\\\\

\sf\dashrightarrow{{AC}^{2}=49+576}\\\\

\sf\dashrightarrow{{AC}^{2}=625}\\\\

\sf\dashrightarrow{AC=\sqrt{625}}\\\\

\sf\dashrightarrow{AC=25\:cm}\\\\

{\bigstar{\red{\underline{\boxed {\sf{AC=25\:cm}}}}}}\\\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions