Math, asked by bainathnaik80, 1 day ago


\huge{\mathtt{\underline{\underline{\color{lavender}{Question}}}}}
Find the area of shaded region of the figure given above.

with explanation

please don't delete my question..​

Attachments:

Answers

Answered by XxArmyandBlink74xX
1

Answer:

Hey Blinky !!

Plz refer the pic .

Hope help ..

Thnx!!

Will you be my friend ??

Attachments:
Answered by ShiNely
10

Answer:

\pink{answer★}

=Ar(ABCDEA)+ar(FGHF)+ar(HIDCJFH)

=Ar(semicircle ABC) - ar(semicircle AED)+ar(semicircle FGH)- ar (semicircle HID) - ar (semicircle FJC)

( \frac{1}{2}\pi \times  \frac{21}{4}   \times  \frac{21}{4} )  - \: ( \frac{1}{2}\pi  \times  \frac{7}{2}  \times  \frac{ 7}{2} ) \\  \\  + ( \frac{1}{2}\pi \times  \frac{7}{2}   \times  \frac{7}{2})  + ( \frac{1}{2}\pi \times  \frac{35}{4} \times \frac{35}{4}) -  \\  \\ ( \frac{1}{2}\pi \times  \frac{7}{2} \times  \frac{7}{2} )m {}^{2}

( \frac{22}{7}  \times  \frac{441}{32})  + ( \frac{1}{2}  \times  \frac{22}{7}  \times  \frac{35}{4}  \times   \frac{35}{7} ) - \\  \\ ( \frac{22}{7}  \times  \frac{49}{8}) m {}^{2}

( \frac{11 \times 63}{16}) + ( \frac{55 \times 35}{16} ) -  \frac{77}{4} ) {m}^{2} =  \\ ( \frac{693}{16}   +  \frac{1925}{16}  -  \frac{77}{4}) {m}^{2}

( \frac{693 + 1925 - 308}{16} ) {m}^{2}

  = \frac{1115}{8}  {m}^{2}  =  144.38 {m}^{2}

Answer of required Area=144.38m²

Similar questions