Math, asked by stoysem, 11 months ago




\huge\olive{\tt{\underline{\underline{ Solve it}}}}

Attachments:

Answers

Answered by Anonymous
4

 \blue{\bold{\underline{\underline{Be Brainly}}}}

Attachments:
Answered by ItsTogepi
2

\huge\underline\mathfrak\pink{Question}

\underline\mathtt\red{Given:}

\huge\sf{x =  \sqrt{3}  +  \sqrt{2} }

\underline\mathtt\red{To \: find:}

\huge\sf{x +  \frac{1}{ {x}^{3} } =?}

Now,by finding the value of x,

\sf{ \implies \frac{1}{x}  =  \frac{1}{ \sqrt{3} +  \sqrt{2}  } }

\sf{ \implies \frac{1}{x}  =  \frac{( \sqrt{3}  -  \sqrt{2} )}{( \sqrt{3} +  \sqrt{2} )( \sqrt{3} -  \sqrt{2} ) } }

\sf{  \implies \frac{1}{x}  =  \frac{ \sqrt{3}  -  \sqrt{2} }{3 - 2} }

\sf{\implies \frac{1}{x}  =  \sqrt{3}  -  \sqrt{2} }

Again ,by finding the value of

\sf{x +  \frac{1}{x} }

\sf{\implies x +  \frac{1}{x} = ( \sqrt{3}  +  \sqrt{2})( \sqrt{3}  -  \sqrt{2} )}

\sf{\implies x +  \frac{1}{x} =2 \sqrt{3} }

Hence,

\sf{x +  \frac{1}{ {x}^{3} } }

\sf{=(x +  \frac{1}{x})^{3}  - 3x. \frac{1}{x} (x +  \frac{1}{x}) }

\sf{ =( 2 \sqrt{3})^{3}  - 3(2 \sqrt{3} )}

\sf{ =24 \sqrt{3}  - 6 \sqrt{3}  }}

\sf{ = 18 \sqrt{3} }

\underline\mathtt\blue{ThankYou}

Similar questions