Math, asked by NewBornTigerYT, 9 months ago

\huge\orange{\underbrace{\overbrace{\ulcorner{\mid{\overline{\mathfrak{\underline{Question\:Above}}}}}}}}

\huge{\fbox{\fbox{\pink{\mathfrak{Explanation\:Required}}}}}

\red\huge{No\:SPAM\:ID\:WILL\: BE\:WARNED}

[Please Understand this image]<b>If you felt it easy then plz answer my questions by checking out my profile</b>

Attachments:

Answers

Answered by Swarup1998
8

(a)

Let, \displaystyle\mathrm{y=vx} such that

\displaystyle\quad \mathrm{\frac{dy}{dx}=v+x\frac{dv}{dx}}

Then, \displaystyle\mathrm{\frac{dy}{dx}=\frac{y}{x}+tan\frac{y}{x}}

\displaystyle\Rightarrow \mathrm{v+x\frac{dv}{dx}=v+tanv}

\displaystyle\Rightarrow \mathrm{x\frac{dv}{dx}=tanv}

\displaystyle\Rightarrow \mathrm{cotv\:dv=\frac{dx}{x}}

On integration, we have

\displaystyle\quad \mathrm{\int cotv\:dv=\int \frac{dx}{x}}

\displaystyle\Rightarrow \mathrm{log(sinv)=logx+logc}

\displaystyle\quad\quadwhere c = constant of integration

\displaystyle\Rightarrow \mathrm{sinv=cx}

\displaystyle\Rightarrow \mathrm{sin\frac{y}{x}=cx}

When \displaystyle\mathrm{x=1,\quad y=\frac{\pi}{2}}

\displaystyle\implies \mathrm{sin\frac{\pi}{2}=c}

\displaystyle\Rightarrow \mathrm{c=1}

We have: \displaystyle\mathrm{sin\frac{y}{x}=x}

For \displaystyle\mathrm{x=\frac{1}{2}}, we have

\displaystyle\quad \mathrm{sin2y=\frac{1}{2}}

\displaystyle\Rightarrow \mathrm{2y=sin^{-1}\frac{1}{2}}

\displaystyle\Rightarrow \mathrm{2y=\frac{\pi}{6}}

\displaystyle\Rightarrow \boxed{\quad\mathrm{y=\frac{\pi}{12}}\quad}

This is the required value of y under the given conditions.

(b)

Now, \displaystyle\mathrm{(1+x)\frac{dy}{dx}-xy=1}

\displaystyle\Rightarrow \mathrm{\frac{dy}{dx}-\frac{x}{x+1}y=\frac{1}{x+1}\quad .....(1)}

\displaystyle\therefore \mathrm{I.F.=e^{-\int \frac{x}{x+1}dx}}

\displaystyle\quad\mathrm{=e^{-\int \frac{(x+1)-1}{x+1}dx}}

\displaystyle\quad\mathrm{=e^{-\int dx+\int \frac{dx}{x+1}}}

\displaystyle\quad\mathrm{=e^{-x+log(x+1)}}

\displaystyle\quad\mathrm{=e^{-x}e^{log(x+1)}}

\displaystyle\quad\mathrm{=e^{-x}(x+1)}

Multiplying (1) by I.F., we get

\displaystyle\quad\mathrm{\frac{d}{dx}\{e^{-x}(x+1)y\}=e^{-x}}

\displaystyle\Rightarrow \mathrm{d\{e^{-x}(x+1)y\}=e^{-x}dx}

On integration, we have

\displaystyle\quad\mathrm{\int d\{e^{-x}(x+1)y\}=\int e^{-x}dx}

\displaystyle\Rightarrow \mathrm{e^{-x}(x+1)y=-e^{-x}+c}

\displaystyle\quad\quadwhere c = constant of integration

When \displaystyle\mathrm{x=0,\quad y=-1}

\displaystyle\implies \mathrm{-1=-1+c}

\displaystyle\Rightarrow \mathrm{c=0}

We have: \displaystyle\mathrm{e^{-x}(x+1)y=-e^{-x}}

\displaystyle\Rightarrow \mathrm{(x+1)y=-1\quad [\because e^{-x}\neq 0]}

For \displaystyle\mathrm{x=\frac{1}{2}}, we have

\displaystyle\quad \mathrm{\frac{3}{2}y=-1}

\displaystyle\Rightarrow \boxed{\quad\mathrm{y=-\frac{2}{3}}\quad}

This is the required value of y under the given conditions.


Swarup1998: Did a lil wrong in 2nd solution; I'll edit it asap.
Swarup1998: edited.
Similar questions