Math, asked by BrainlyIshu, 2 months ago

 \huge\pink{ \bigstar} \: \bf \color{navy}Que \color{blue}st \purple{ion}How many terms of the AP -1,-5,-9 must be taken to get a sum of -496​

Answers

Answered by SparklingBoy
46

 \red{\large{\qquad\qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  QUESTION \:   \maltese }}}}}}

How Many terms of the A.P. 

-1 , -5 , -9 , . . . should be taken to get a Sum of -496.

___________________________

 \green{\large{ \qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  GIVEN \:   \maltese }}}}}}

An A.P. -1 , -5 , -9 , . . . 

So,

First term = a = -1

And

Common difference = d = -4

Let Required Number of turns be = n

So,

 \bf Sum = S_{n} = - 496

___________________________

 \blue{\large{\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  TO \: \: FIND \:   \maltese }}}}}}

Value of n

___________________________

 \green{\large{ \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  KEY \: \: FORMULA \:   \maltese }}}}}}

Sum of n terms if an A.P is given by :

 \bigstar \: \: \bf S_{n} = \dfrac{n}{2} \bigg(2a + (n - 1)d \bigg)

___________________________

 \purple{\large{\qquad\qquad \underline{ \pmb{{ \mathbb{ \maltese  \: SOLUTION\:   \maltese }}}}}}

We have, 

a = -1 

d = -4

Sum = -496

Applying Formula of Sum ,

 \sf - 496 = \dfrac{n}{2} \bigg\{2( - 1) + (n - 1)( - 4) \bigg \} \\ \\ \sf - 496 = \frac{n}{2} \bigg \{2 - 4n \bigg \} \\ \\ \sf- 496 = n(1 - 2n) \\ \\ \sf- 496 = n - 2 {n}^{2} \\ \\ \implies \bf2 {n}^{2} - n - 496 = 0

 \sf2 {n}^{2} - 32n + 31n - 496 = 0 \\ \\ \sf2n(n - 16) + 31(n - 16) = 0 \\ \\ \sf (2n + 31)(n - 16) = 0 \\ \\ \implies \bf n = 16 \: \: or \: \: n = \frac{ - 31}{2}

As n is number of terms so it can't be Negative.

Hence ,

\Large \purple{ \underline{\boxed{ \bf n = 16 }}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Answered by Anonymous
63

Answer:

Given :-

  • The AP of - 1, - 5, - 9 must be taken to get a sum of - 496.

To Find :-

  • How many numbers of terms can be found in an AP.

Formula Used :-

\clubsuit Sum of first n terms of an AP Formula :

\mapsto \sf\boxed{\bold{\pink{S_n =\: \dfrac{n}{2}\bigg\lgroup 2a + (n - 1)d\bigg\rgroup}}}\\

where,

  • \sf S_n = Sum of first n terms of an AP
  • a = First term of an AP
  • d = Common difference
  • n = Number of terms of an AP

Solution :-

Given :

\bigstar\: \: \: \bf{First\: term\: of\: an\: AP\: (a) =\: - 1}\\

\bigstar\: \: \: \bf{Common\: difference\: (d) =\: - 4}\\

\bigstar\: \: \: \bf{Sum\: of\: n\: terms\: (S_n) =\: - 496}\\

According to the question by using the formula we get,

\implies \sf - 496 =\: \dfrac{n}{2}\bigg\lgroup 2(- 1) + (n - 1)(- 4)\bigg\rgroup\\

\implies \sf - 496 =\: \dfrac{n}{2}\bigg\lgroup -2 + (n - 1)(- 4)\bigg\rgroup\\

\implies \sf - 496 =\: \dfrac{n}{2}\bigg\lgroup - 2 - 4(n - 1)\bigg\rgroup\\

\implies \sf - 496 =\: \dfrac{n}{2}\bigg\lgroup - 2 - 4n + 4\bigg\rgroup\\

\implies \sf - 496 =\: \dfrac{n}{2}\bigg\lgroup - 2 + 4 - 4n\bigg\rgroup\\

\implies \sf - 496 =\: \dfrac{n}{2}\bigg\lgroup 2- 4n\bigg\rgroup\\

\implies \sf - 496 =\: n(1 - 2n)

\implies \sf - 496 =\: n - 2n^2

\implies \sf - 496 - n + 2n^2 =\: 0

\implies \sf 2n^2 - n - 496 =\: 0

\implies \sf 2n^2 - (32 - 31)n - 496 =\: 0

\implies \sf 2n^2 - 32n + 31n - 496 =\: 0\: \: \bigg\lgroup \small\sf\bold{\pink{By\: splitting\: middle\: term}}\bigg\rgroup\\

\implies \sf 2n(n - 16) + 31(n - 16) =\: 0

\implies \sf (2n + 31)(n - 16) =\: 0

\implies \bf{(2n + 31) =\: 0}

\longrightarrow \sf 2n + 31 =\: 0

\longrightarrow \sf 2n =\: - 31

\longrightarrow \sf\bold{\purple{n =\: \dfrac{- 31}{2}}}\: \: \bigg\lgroup \small\sf\bold{\pink{Number\: of\: terms\: can't\: be\: negetive (- ve)}}\bigg\rgroup\\

\implies \bf{(n - 16) =\: 0}

\longrightarrow \sf n - 16 =\: 0

\longrightarrow \sf \bold{\red{n =\: 16}}

\therefore The number of terms can be found in an AP is 16.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA INFORMATION :-

\clubsuit General term (nth term) of an AP Formula :

\mapsto \sf\boxed{\bold{\pink{a_n =\: a + (n - 1)d}}}\\

where,

  • \sf a_n = nth term of an AP
  • a = First term of an AP
  • n = Number of terms of an AP
  • d = Common difference
Similar questions