History, asked by BrainlyHannu, 3 months ago


\huge \pink{ \boxed{ \sf{ \green{Question}}}}

Prove that:

 \huge \frac{ {3}^{ - 3}  \times  {6}^{2}  \times  \sqrt{98} }{ {5}^{2} \times  \sqrt[3]{ \frac{1}{25} }   \times ( {15})^{ \frac{ - 4}{3}}  \times  {3}^{ \frac{1}{3} } }  = 28 \sqrt{2}
No spam❌

▫️No copy paste

For moderators​

Answers

Answered by Anonymous
3

 \pink{\begin{gathered} \frac{{3}^{ - 3} \times {6}^{2} \times \sqrt{98 }}{{5}^{2} \times \sqrt[3]{ \frac{1}{25} } \times {15}^{ \frac{ - 4}{3} } \times {3}^{ \frac{1}{3}}} \\ \\ = \frac{{3}^{ - 3} \times {6}^{2} \times 7\sqrt{2 }}{{5}^{2} \times {5}^{ \frac{ - 2}{3} } \times {5}^{ \frac{ - 4}{3} }\times {3}^{ \frac{ - 4}{3} } \times {3}^{ \frac{1}{3}}} \\ \\ = \frac{{3}^{ - 3} \times {3}^{2} \times {2}^{2} \times {2}^{ \frac{1}{2} } \times 7}{{5}^{2} \times {5}^{ \frac{ - 2}{3} } \times {5}^{ \frac{ - 4}{3} }\times {3}^{ \frac{ - 4}{3} } \times {3}^{ \frac{1}{3}}} \\ \\ = {3}^{( - 3 + 2 + \frac{4}{3} - \frac{1}{3}) } \times {2}^{(2 + \frac{1}{2}) } \times 7 \times {5}^{ - 2 + \frac{2}{3} + \frac{4}{3} } \\ \\ = {3}^{0} \times {2}^{ \frac{5}{2} } \times 7 \times {5}^{0} \\ \\ = 4 \sqrt{2} \times 7 \\ \\ = 28 \sqrt{2} \end{gathered} </p><p>}

Answered by Anonymous
130

Refer this attachment

Hope it's help you

Attachments:
Similar questions