Math, asked by Anonymous, 4 months ago

\huge\pink{\fbox{\colorbox{yellow}{\color{blue}{Question}}}}
Simplify :
4 \frac{4}{5} ÷ \frac{3}{5} \: of \: 5 + \frac{4}{5} × \frac{3}{10} - \frac{1}{5}

Answers

Answered by Anonymous
79

 \dag \:  \sf{4 \frac{4}{5} ÷ \frac{3}{5} \: of \: 5 + \frac{4}{5} × \frac{3}{10} - \frac{1}{5}}  \:  \dag

➩ Lets just simplify first.

 \star \sf{ \underline{1st \: simplification}}

 \longmapsto  \sf{4 \frac{4}{5}   \div  \frac{3}{5} } \\ \\  \longmapsto \sf{ \frac{4 \times 5 + 4}{5}  \div  \frac{3}{5} } \\  \\ \longmapsto \sf{ \frac{24}{5} \div  \frac{3}{5}  } \\  \\ \longmapsto \sf{ \frac{24}{5}  \times  \frac{5}{3} }  \\  \\ \longmapsto \sf{ \frac{24 \times 5}{5 \times 3} } \\  \\ \longmapsto \sf{ \cancel \frac{120}{15} } \\  \\  \underline{ \boxed{ \sf{ \red{8}}}}

 \therefore    \underline{\boxed{\tt{8 \: of \: 5 +  \frac{4}{5}  \times  \frac{3}{10} -  \frac{1}{5}  }}}

 \star \:  \sf{ \underline{2nd \: simplification}}

 \longmapsto \sf{5 +  \frac{4}{5} } \\  \\  \longmapsto  \sf{ \frac{5}{1 }  +  \frac{4}{5}  } \\  \\  \longmapsto  \sf{ \frac{5 \times 5}{1 \times 5} +  \frac{4}{5}  } \\  \\  \longmapsto  \sf{ \frac{25}{5}  +  \frac{4}{5} } \\  \\  \longmapsto  \sf{ \frac{25 + 4}{5} } \\  \\  \longmapsto  \sf{ \frac{29}{5} }

 \therefore    \underline{\boxed{\tt{8 \: of \:  \frac{29}{5}   \times  \frac{3}{10} -  \frac{1}{5}  }}}

 \star \:  \sf{ \underline{3rd \: simplification}}

  \longmapsto  \sf{ \frac{29}{5}  \times  \frac{3}{10} } \\  \\  \longmapsto  \sf{ \frac{29 \times 3}{5 \times 10} }  \\  \\  \underline{ \boxed{ \sf{ \red{\frac{87}{50}}}}}

 \therefore    \underline{\boxed{\tt{8 \: of \:   \frac{87}{50}   -  \frac{1}{5}  }}}

 \star \:  \sf{ \underline{4th \: simplification}}

 \longmapsto \sf{ \frac{87}{50} -  \frac{1}{5}  } \\  \\  \longmapsto \sf{  \frac{87}{50} -  \frac{1 \times 10}{5 \times 10}   } \\  \\  \longmapsto \sf{ \frac{87}{50} -  \frac{10}{50}  } \\  \\  \longmapsto \sf{ \frac{87 - 10}{50} } \\  \\  \longmapsto   \underline{ \boxed{ \sf{  \red{\frac{77}{50} }}}}

 \therefore    \underline{\boxed{\tt{8 \: of \:   \frac{77}{50}    }}}

___________________

Answered by Anonymous
121

Answer:

\dag \: \sf{4 \frac{4}{5} ÷ \frac{3}{5} \: of \: 5 + \frac{4}{5} × \frac{3}{10} - \frac{1}{5}}

➩ Lets just simplify first.

\star \sf{ \underline{1st \: simplification}}⋆

\begin{gathered} \longmapsto \sf{4 \frac{4}{5} \div \frac{3}{5} } \\ \\ \longmapsto \sf{ \frac{4 \times 5 + 4}{5} \div \frac{3}{5} } \\ \\ \longmapsto \sf{ \frac{24}{5} \div \frac{3}{5} } \\ \\ \longmapsto \sf{ \frac{24}{5} \times \frac{5}{3} } \\ \\ \longmapsto \sf{ \frac{24 \times 5}{5 \times 3} } \\ \\ \longmapsto \sf{ \cancel \frac{120}{15} } \\ \\ \underline{ \boxed{ \sf{ \red{8}}}}\end{gathered}

\therefore \underline{\boxed{\tt{8 \: of \: 5 + \frac{4}{5} \times \frac{3}{10} - \frac{1}{5} }}}

\star \: \sf{ \underline{2nd \: simplification}}⋆

\begin{gathered} \longmapsto \sf{5 + \frac{4}{5} } \\ \\ \longmapsto \sf{ \frac{5}{1 } + \frac{4}{5} } \\ \\ \longmapsto \sf{ \frac{5 \times 5}{1 \times 5} + \frac{4}{5} } \\ \\ \longmapsto \sf{ \frac{25}{5} + \frac{4}{5} } \\ \\ \longmapsto \sf{ \frac{25 + 4}{5} } \\ \\ \longmapsto \sf{ \frac{29}{5} }\end{gathered}

\therefore \underline{\boxed{\tt{8 \: of \: \frac{29}{5} \times \frac{3}{10} - \frac{1}{5} }}}

 \star \: \sf{ \underline{3rd \: simplification}}⋆

\begin{gathered} \longmapsto \sf{ \frac{29}{5} \times \frac{3}{10} } \\ \\ \longmapsto \sf{ \frac{29 \times 3}{5 \times 10} } \\ \\ \underline{ \boxed{ \sf{ \red{\frac{87}{50}}}}}\end{gathered}

\therefore \underline{\boxed{\tt{8 \: of \: \frac{87}{50} - \frac{1}{5} }}}

\star \: \sf{ \underline{4th \: simplification}}

\begin{gathered} \longmapsto \sf{ \frac{87}{50} - \frac{1}{5} } \\ \\ \longmapsto \sf{ \frac{87}{50} - \frac{1 \times 10}{5 \times 10} } \\ \\ \longmapsto \sf{ \frac{87}{50} - \frac{10}{50} } \\ \\ \longmapsto \sf{ \frac{87 - 10}{50} } \\ \\ \longmapsto \underline{ \boxed{ \sf{ \red{\frac{77}{50} }}}}\end{gathered}

\therefore \underline{\boxed{\tt{8 \: of \: \frac{77}{50} }}}

Step-by-step explanation:

ᴘʟs ᴅᴏɴ'ᴛ ʀᴇᴘᴏʀᴛ

Similar questions