Math, asked by Nereida, 1 year ago

\huge\pink{\mid{\underline{\overline{\tt HELLO}}\mid}}

GENIUS...SOLVE THIS

For what value of a and b are the zeroes of
q(x) =  {x}^{3}  + 2 {x}^{2}  + a
are also the zeroes of the polynomial
p(x) =  {x}^{5}  -  {x}^{4}  - 4 {x}^{3} + 3 {x}^{2}   + 3x + b
⁉⁉⁉⁉???


(Also answer my last English question)


All the best!!!⭕⭕⭕

Answers

Answered by Anonymous
5

Solution

Given that the zeroes of q(x)= x^3 +2x^2+a are also the zeroes of the polynomial p(x)= x^5-x^4-4x^3+3x^2+ 3x+b. q(x) is a factor of p(x). Then, we use a division algorithm.

 =  { {x}^{5}  -   {x}^{4}    - 4 {x}^{3} + 3 {x}^{2} + 3x +b} \div  {x}^{3}  + 2 {x}^{2}  + a \\  =  - (1 + a) {x}^{2}  + (3 + 3a)x + (b - 2a)

If (x^3+ 2x^2+a) is a factor of (x^5- x^4- 4x^3+ 3x^2+ 3x+ b), then remainder should be zero.

==) -(1+a)x^2+(3+3a)x+(b-2a)= 0

==) 0.x^2+ 0.x+0

On comparing the coefficient of x, we get

= a+1= 0

= a= -1

and b-2a= 0

= b=2a

= b= 2(-1) = -2-----------{value of a= -1}

HOPE IT HELP

Answered by arnav134
2

= { {x}^{5} - {x}^{4} - 4 {x}^{3} + 3 {x}^{2} + 3x +b} \div {x}^{3} + 2 {x}^{2} + a \\ = - (1 + a) {x}^{2} + (3 + 3a)x + (b - 2a)=x

5

−x

4

−4x

3

+3x

2

+3x+b÷x

3

+2x

2

+a

=−(1+a)x

2

+(3+3a)x+(b−2a)

If (x^3+ 2x^2+a) is a factor of (x^5- x^4- 4x^3+ 3x^2+ 3x+ b), then remainder should be zero.

-(1+a)x^2+(3+3a)x+(b-2a)= 0

0.x^2+ 0.x+0

On comparing the coefficient of x, we get

= a+1= 0

= a= -1

and b-2a= 0

= b=2a

= b= 2(-1) = -2££££-{value of a= -1


Nereida: thanks
Similar questions