GENIUS...SOLVE THIS
For what value of a and b are the zeroes of
are also the zeroes of the polynomial
⁉⁉⁉⁉???
(Also answer my last English question)
All the best!!!⭕⭕⭕
Answers
Solution
Given that the zeroes of q(x)= x^3 +2x^2+a are also the zeroes of the polynomial p(x)= x^5-x^4-4x^3+3x^2+ 3x+b. q(x) is a factor of p(x). Then, we use a division algorithm.
If (x^3+ 2x^2+a) is a factor of (x^5- x^4- 4x^3+ 3x^2+ 3x+ b), then remainder should be zero.
==) -(1+a)x^2+(3+3a)x+(b-2a)= 0
==) 0.x^2+ 0.x+0
On comparing the coefficient of x, we get
= a+1= 0
= a= -1
and b-2a= 0
= b=2a
= b= 2(-1) = -2-----------{value of a= -1}
HOPE IT HELP
= { {x}^{5} - {x}^{4} - 4 {x}^{3} + 3 {x}^{2} + 3x +b} \div {x}^{3} + 2 {x}^{2} + a \\ = - (1 + a) {x}^{2} + (3 + 3a)x + (b - 2a)=x
5
−x
4
−4x
3
+3x
2
+3x+b÷x
3
+2x
2
+a
=−(1+a)x
2
+(3+3a)x+(b−2a)
If (x^3+ 2x^2+a) is a factor of (x^5- x^4- 4x^3+ 3x^2+ 3x+ b), then remainder should be zero.
-(1+a)x^2+(3+3a)x+(b-2a)= 0
0.x^2+ 0.x+0
On comparing the coefficient of x, we get
= a+1= 0
= a= -1
and b-2a= 0
= b=2a
= b= 2(-1) = -2££££-{value of a= -1