Math, asked by llAgniSiragull, 14 hours ago


 \huge \pink{question}

 if \frac{ {cos}^{2} teta}{sin \: teta}  = p \: and \:  \frac{ {sin}^{2}teta }{cos \: teta}  = q \: then \\ \\  prove \: that \:  {p}^{2} {q}^{2}( {p}^{2} +  {q}^{2} + 3) = 1
❥ Need a correct answer ☺️​

Attachments:

Answers

Answered by ItzmissCandy
9

Answer:

\huge\mathfrak\blue{answer}

LHS :

q(p

2

−1)

=(secθ+cosec θ)[(sinθ+cosθ)

2

−1]

=(

cosθ

1

+

sinθ

1

)(2sinθcosθ)

=(

sinθcosθ

sinθ+cosθ

)(2sinθcosθ)

=2(sinθ+cosθ)=2p = RHS

hope it helps you ☺️

Answered by vikas180998
0

Answer:

q(p

2

−1)

=(secθ+cosec θ)[(sinθ+cosθ)

2

−1]

=(

cosθ

1

+

sinθ

1

)(2sinθcosθ)

=(

sinθcosθ

sinθ+cosθ

)(2sinθcosθ)

=2(sinθ+cosθ)=2p = RHS

Similar questions