Math, asked by amankumaraman11, 8 months ago

 \Huge \Purple{ \mathtt{HOLA !!}}

\sf{Find \: \: the \: \: amount \: \: on \: \: 210000 \: \: at \: \: the} \\ \sf { rate \: \: of \: \: 3 \: \: percent \: \: for \: \: 9 \: \: years \: \: 2 \:} \\ \sf {month \: \: compounded \: \: annually.}

● Please show me solution also.

□ Best Answerer Will be Followed & Marked Brainliest too.

■ Answer the Question only if you can elaborate it.​

Answers

Answered by mddilshad11ab
138

\sf\large\underline\blue{Given:}

\rm{\implies Principal=Rs.210000}

\rm{\implies Rate=3\%}

\rm{\implies Time=9\: years\:and\:2\: months}

\sf\large\underline\blue{To\: Find:}

\rm{\implies Amount=?}

\sf\large\underline\blue{Solution:}

  • Here, the time is given in fraction form. So, we have to use a special formula to calculate the amount. At first, convert the time into a mixed fraction. Once converted, we then get the fraction as 9 (1/6)]

\sf\large\underline\blue{Formula\:used:}

\tt{\implies A=P\bigg(1+\dfrac{r}{100}\bigg)^n\bigg(1+\dfrac{rF}{100}\bigg)}

  • F=1/6, And n=9

\tt{\implies A=210000\bigg(1+\dfrac{3}{100}\bigg)^9\bigg(1+\dfrac{3*1}{6*100}\bigg)}

\tt{\implies A=210000\bigg(\dfrac{103}{100}\bigg)^9\bigg(1+\dfrac{3}{600}\bigg)}

\tt{\implies A=210000\bigg(\dfrac{103}{100}\bigg)^9\bigg(1+\dfrac{1}{200}\bigg)}

\tt{\implies A=210000*(1.03)^9\times\dfrac{201}{200}}

\tt{\implies A=210000*1.30477318383*\dfrac{201}{200}}

\tt{\implies A=274002.368604*\dfrac{201}{200}}

\tt{\implies A=\dfrac{55074476.1}{200}}

\tt{\implies A=275372.381}

\sf\large{Hence,}

\tt{\implies Amount=Rs.275372.381}


amitkumar44481: Nice :-)
mddilshad11ab: thanks bro
Answered by XxRedmanherexX
1

Given:

Principal = Rs. 2,10,000

Rate = 3℅

Time = 9 year and 2 months

To Find:

Amount

Formula:

A = P(1 +  \frac{r}{100} ) {}^{n} (1  +  \frac{rF}{100} )

F = 1/6 and n = 9

A = 210000 {(1 +  \frac{3}{100}) }^{9} (1 +  \frac{3 \times 1}{6 \times 100} ) \\ Amount = Rs.275372.381

\huge {\pink{ \boxed{ \boxed{ \boxed{\bf{\red{XxRedmanherexX}}}}}}}

Similar questions