Math, asked by Anonymous, 9 months ago

\huge\purple{♡}\pink {Question}\purple {♡}

Show that the diagonals of a parallelogram divide it into four triangles of equal area.​

Answers

Answered by adityachoudhary2956
124

\boxed{\huge\underline{\mathscr\red{♡ANSWER♡}}}

{\huge{\mathfrak\pink{to \:prove:-}}}

ar(△AOB)=ar(△BOC)=ar(△COD)=ar(△AOD)

{\huge{\mathfrak\pink{prove ;-}}}

Let ABCD be a parallelogram with diagonals AC and BD

intersecting at O. Since the diagonals of a parallelogram bisect each other at the point of intersection.

Therefore,

AO=OC and BO=OD

We know that the median of a triangle divides it into two equal parts.

Now,

In △ABC,

∵BO is median.

ar(△AOB)=ar(△BOC).....(1)

In △BCD,

∵CO is median.

ar(△BOC)=ar(△COD).....(2)

In △ACD,

∵DO is median.

ar(△AOD)=ar(△COD).....(3)

From equation (1),(2)&(3), we get

ar(△AOB)=ar(△BOC)=ar(△COD)=ar(△AOD)

Hence proved.

\boxed{\huge{\mathbb\red{ ThAnKs}}}

Attachments:
Answered by Anonymous
37

\huge\purple{♡}\pink {Question}\purple {♡}

Show that the diagonals of a parallelogram divide it into four triangles of equal area.

\huge\purple{♡}\pink {answer}\purple {♡}

ABCD is a parallelogram

 diagonals of ∥gm bisect each other

∴ O is m.p of BD i.e., OB = OD

O is m.p of AC i.e; OA = OC

In △ABC;OA=OC

∴BO is the median of △ABC

⇒ar(△AOB)=ar(△BOC)

In △ADC÷ since OA=OC

∴DO is the median of △ADC

⇒ar(△AOD)=ar(△COD)

Similary In △ABD ; OB = OD

∴ AO is the median of △ABD

⇒ar(△AOB)=ar(△AOD)

∴ar(△AOB)=ar(△BOC)=ar(△COD)=ar(△AOD)

∴ Proved.

.

.

.

.

..

 \green{ɪ  \:  \:  ʜᴏᴘᴇ  \:  \:  ɪᴛ's  \:  \:  \:  ʜᴇʟᴘ  \:  \:  \:   ᴜ :)</h3><h3></h3><h3>✿❤THANKS❤✿}

 \blue{꧁☆Brainly  \:  \: queen \:  \:  here☆꧂}

Attachments:
Similar questions