Math, asked by AnanyaBaalveer, 2 days ago


 \huge  \purple\star \large  \green\star \small \red \star \tiny  \orange\star  \large{\sf{Solution}}  \tiny  \orange\star\small \red \star \large  \green\star \huge  \purple\star
In the given figure, PQII RS, ZPXM = 50° and ZMYS = 120°, find the value of x if reflex angleXMY is x -20°.​

Attachments:

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-}}

Construction :- Through M, draw a line m parallel to PQ.

So, m || PQ || RS

As PQ || m

⟹ ∠PXM = ∠XMB [ Alternate interior angles ]

⟹∠XMB = 50° ------[1]

Now, m || RS

⟹ ∠BMY + ∠MYS = 180° [ Sum of co-interiors ]

⟹ ∠BMY + 120° = 180°

⟹ ∠BMY = 60° --------[2]

Now, ∠XMY = ∠XMB + ∠BMY

⟹ ∠XMY = 50° + 60° = 110°

Now,

∠XMY + reflex∠XMY = 360°

\rm \: 110 \degree\:  +  \: x - 20 = 360\degree  \\

\rm \: 90 \degree\:  +  \: x  = 360\degree  \\

\rm \: x  = 360\degree  - 90\degree  \\

\rm\implies \:\boxed{ \rm{ \:x \:  =  \: 270\degree  \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

1. If lines are parallel, corresponding angles are equal.

2. If lines are parallel, alternate interior angles are equal.

3. If lines are parallel, sum of co-interior angles are supplementary.

Attachments:
Answered by pradhanmadhumita2021
24

\huge \purple\star \large \green\star \small \red \star \tiny \orange\star \large{\sf{Solution}} \tiny \orange\star\small \red \star \large \green\star \huge \purple\star \\ \bf{ Draw \: a  \: line through  \: M  \: Parallel \:  to  \: PQ  \: and  \: RS.} \\ \sf{ ∠ a=50⁰ (alternate angles)}  \\ \sf{∠ c+120⁰ =180⁰  (linear pair)} \\ \sf{ = ∠  c=60⁰} \\ \sf{ Also \:∠b= ∠ c (alternate \:  angles)} \\  \sf{=∠  b=60 }\\ \sf{x-20 + ∠b +∠ a=360 }\\ \sf{  =  x-20⁰  +60⁰ +50⁰  =360⁰} \\\sf{x=360⁰-110⁰+20⁰}\\  \sf{=270⁰}

Attachments:
Similar questions