CBSE BOARD XII, asked by NewBornTigerYT, 9 months ago

\huge\purple{\underbrace{\overbrace{\ulcorner{\mid{\overline{\underline{Question\:Above}}}}}}}

\green{\underbrace{\overbrace{\ulcorner{\mid{\overline{\underline{\mathfrak{No\:Spam}}}}}}}}

\huge{\fbox{\fbox{\orange{\mathfrak{Explanation\:Required}}}}}

If you felt it easy then plz answer my questions by checking out my profile

Attachments:

Answers

Answered by Swarup1998
17

Let us find some values first:

\quad ^{n+3}C_{n+1}-^{n+2}C_{n}

=\frac{(n+3)!}{(n+1)!2!}-\frac{(n+2)!}{n!2!}

=\frac{(n+2)!}{n!2!}\big(\frac{n+3}{n+1}-1\big)

=\frac{(n+2)!}{n!2!}.\frac{2}{n+1}

=n+2

Similarly,

\quad\quad ^{n+4}C_{n+2}-^{n+2}C_{n+1}=n+3

\quad\quad ^{n+5}C_{n+3}-^{n+4}C_{n+2}=n+4

\quad\quad ^{n+4}C_{n+2}-^{n+2}C_{n}=2n+5

\quad\quad ^{n+5}C_{n+3}-^{n+3}C_{n+1}=2n+7

\quad\quad ^{n+6}C_{n+4}-^{n+4}C_{n+2}=2n+9

\therefore \left|\begin{array}{ccc} ^{n+2}C_{n}&^{n+3}C_{n+1}&^{n+4}C_{n+2}\\ ^{n+3}C_{n+1}&^{n+4}C_{n+2}&^{n+5}C_{n+3}\\ ^{n+4}C_{n+2}&^{n+5}C_{n+3}&^{n+6}C_{n+4}\end{array}\right|

We do C'_{2}\to C_{2}-C_{1}\:\&\:C'_{3}\to C_{3}-C_{1}:

=\left|\begin{array}{ccc} ^{n+2}C_{n}&^{n+3}C_{n+1}-^{n+2}C_{n}&^{n+4}C_{n+2}-^{n+2}C_{n}\\ ^{n+3}C_{n+1}&^{n+4}C_{n+2}-^{n+3}C_{n+1}&^{n+5}C_{n+3}-^{n+3}C_{n+1}\\ ^{n+4}C_{n+2}&^{n+5}C_{n+3}-^{n+4}C_{n+2}&^{n+6}C_{n+4}-^{n+4}C_{n+2}\end{array}\right|

=\left|\begin{array}{ccc} ^{n+2}C_{n}&n+2&2n+5\\ ^{n+3}C_{n+1}&n+3&2n+7\\ ^{n+4}C_{n+2}&n+4&2n+9 \end{array}\right|

We take ^{n+2}C_{n} common from C_{1}:

=^{n+2}C_{n}\left|\begin{array}{ccc}1&n+2&2n+5\\ \frac{n+3}{n+1}&n+3&2n+7\\ \frac{(n+4)(n+3)}{(n+2)(n+1)}&n+4&2n+9\end{array}\right|

We do C'_{3}\to C_{3}-2C_{2}:

=^{n+2}C_{n}\left|\begin{array}{ccc}1&n+2&1\\ \frac{n+3}{n+1}&n+3&1\\ \frac{(n+4)(n+3)}{(n+2)(n+1)}&n+4&1\end{array}\right|

We do R'_{2}\to R_{2}-R_{1}\:\&\:R'_{3}\to R_{3}-R_{1}:

=^{n+2}C_{n}\left|\begin{array}{ccc}1&n+2&1\\\frac{2}{n+1}&1&0\\ \frac{4n+10}{(n+2)(n+1)}&2&0\end{array}\right|

Expanding along C_{3}:

=^{n+2}C_{n}\big[\frac{4}{n+1}-\frac{4n+10}{(n+2)(n+1)}\big]

=^{n+2}C_{n}.\frac{4n+8-4n-10}{(n+2)(n+1)}

=-^{n+2}C_{n}.\frac{2}{(n+2)(n+1)}

=-\frac{(n+2)(n+1)n!}{n!2!}.\frac{2}{(n+2)(n+1)}

=-1

Finally we have :

\left|\begin{array}{ccc} ^{n+2}C_{n}&^{n+3}C_{n+1}&^{n+4}C_{n+2}\\ ^{n+3}C_{n+1}&^{n+4}C_{n+2}&^{n+5}C_{n+3}\\ ^{n+4}C_{n+2}&^{n+5}C_{n+3}&^{n+6}C_{n+4}\end{array}\right|=-1

Answered by Anonymous
4

Similarly,

{\quad\quad ^{n+4}C_{n+2}-^{n+2}C_{n+1}=n+3 }

n+4Cn+2− n+2Cn+1=n+3

{\quad\quad ^{n+5}C_{n+3}-^{n+4}C_{n+2}}

=n+4n+5Cn+3−n+4Cn+2=n+4

{\quad\quad ^{n+4}C_{n+2}-^{n+2}C_{n}=2n+5 }

n+4Cn+2−n+2Cn=2n+5

{\quad\quad ^{n+5}C_{n+3}-^{n+3}C_{n+1}}

=2n+7n+5Cn+3−n+3Cn+1=2n+7

{\quad\quad ^{n+6}C_{n+4}-^{n+4}C_{n+2}}

=2n+9n+6Cn+4−n+4Cn+2=2n+9

{\begin{gathered}\therefore \left|\begin{array}{ccc} ^{n+2}C_{n}&^{n+3}C_{n+1}&^{n+4}C_{n+2}\\ ^{n+3}C_{n+1}&^{n+4}C_{n+2}&^{n+5}C_{n+3}\\ ^{n+4}C_{n+2}&^{n+5}C_{n+3}&^{n+6}C_{n+4}\end{array}\right|\end{gathered}}

∴n+2Cnn+3Cn+1n+4Cn+2n+3Cn+1n+4Cn+2n+5Cn+3n+4Cn+2n+5Cn+3n+6Cn+4

{ We do C'_{2}\to C_{2}-C_{1}\:\&\:C'_{3}\to C_{3}-C_{1}C }

2′→C2−C1&C3′→C3−C1:

{\begin{gathered}=\left|\begin{array}{ccc} ^{n+2}C_{n}&^{n+3}C_{n+1}-^{n+2}C_{n}&^{n+4}C_{n+2}-^{n+2}C_{n}\\ ^{n+3}C_{n+1}&^{n+4}C_{n+2}-^{n+3}C_{n+1}&^{n+5}C_{n+3}-^{n+3}C_{n+1}\\ ^{n+4}C_{n+2}&^{n+5}C_{n+3}-^{n+4}C_{n+2}&^{n+6}C_{n+4}-^{n+4}C_{n+2}\end{array}\right|\end{gathered} }

{ We \: take ^{n+2}C_{n} }

n+2Cn

{ common \: from C_{1}C }

{\begin{gathered}=^{n+2}C_{n}\left|\begin{array}{ccc}1&n+2&2n+5\\ \frac{n+3}{n+1}&n+3&2n+7\\ \frac{(n+4)(n+3)}{(n+2)(n+1)}&n+4&2n+9\end{array}\right|\end{gathered} }

=n+2Cn1n+1n+3(n+2)(n+1)(n+4)(n+3)n+2n+3n+42n+52n+72n+9

{ We \: do C'_{3}\to C_{3}-2C_{2}C }

3′→C3−2C2:

{ \begin{gathered}=^{n+2}C_{n}\left|\begin{array}{ccc}1&n+2&1\\ \frac{n+3}{n+1}&n+3&1\\ \frac{(n+4)(n+3)}{(n+2)(n+1)}&n+4&1\end{array}\right|\end{gathered} }

=n+2Cn

1n+1n+3(n+2)(n+1)(n+4)(n+3)n+2n+3n+4111

{ We \: do \: R'_{2}\to R_{2}-R_{1}\:\&\:R'_{3}\to R_{3}-R_{1}R }

2′→R2−R1&R3′→R3−R1:

{\begin{gathered}=^{n+2}C_{n}\left|\begin{array}{ccc}1&amp;n+2&amp;1\\\frac{2}{n+1}&amp;1&amp;0\\ \frac{4n+10}{(n+2)(n+1)}&amp;2&amp;0\end{array}\right|\end{gathered}}[tex]</p><p>=n+2Cn1n+12(n+2)(n+1)4n+10n+212100</p><p>[tex]{Expanding \: along C_{3}C3:}

{ =^{n+2}C_{n}\big[\frac{4}{n+1}-\frac{4n+10}{(n+2)(n+1)}\big]= }

n+2Cn[ n+14−(n+2)(n+1)4n+10]

{=^{n+2}C_{n}.\frac{4n+8-4n-10}{(n+2)(n+1)}= }

n+2Cn.(n+2)(n+1)4n+8−4n−10

{ =-^{n+2}C_{n}.\frac{2}{(n+2)(n+1)}=− }

n+2Cn.(n+2)(n+1)2

{ =-\frac{(n+2)(n+1)n!}{n!2!}.\frac{2}{(n+2)(n+1)}=− </p><p>n!2!}

(n+2)(n+1)n!.(n+2)(n+1)2=-1=−1

Finally we have :

{\begin{gathered}\left|\begin{array}{ccc} ^{n+2}C_{n}&amp;^{n+3}C_{n+1}&amp;^{n+4}C_{n+2}\\ ^{n+3}C_{n+1}&amp;^{n+4}C_{n+2}&amp;^{n+5}C_{n+3}\\ ^{n+4}C_{n+2}&amp;^{n+5}C_{n+3}&amp;^{n+6}C_{n+4}\end{array}\right|=-1\end{gathered} }

n+2Cnn+3Cn+1n+4Cn+2

n+3C n+1n+4Cn+2n+5Cn+3n+4Cn+2n+5Cn+3n+6Cn+4=−1n+6Cn+4−n+4Cn+2=2n+9

{\begin{gathered}\therefore \left|\begin{array}{ccc} ^{n+2}C_{n}&amp;^{n+3}C_{n+1}&amp;^{n+4}C_{n+2}\\ ^{n+3}C_{n+1}&amp;^{n+4}C_{n+2}&amp;^{n+5}C_{n+3}\\ ^{n+4}C_{n+2}&amp;^{n+5}C_{n+3}&amp;^{n+6}C_{n+4}\end{array}\right|\end{gathered} }

∴n+2Cnn+3Cn+1n+4Cn+2n+3Cn+1n+4Cn+2n+5Cn+3n+4Cn+2n+5Cn+3n+6Cn+4

{We \: do C'_{2}\to C_{2}-C_{1}\:\&amp;\:C'_{3}\to C_{3}-C_{1}C }

2′→C2−C1&C3′→C3−C1 :

{\begin{gathered}=\left|\begin{array}{ccc} ^{n+2}C_{n}&amp;^{n+3}C_{n+1}-^{n+2}C_{n}&amp;^{n+4}C_{n+2}-^{n+2}C_{n}\\ ^{n+3}C_{n+1}&amp;^{n+4}C_{n+2}-^{n+3}C_{n+1}&amp;^{n+5}C_{n+3}-^{n+3}C_{n+1}\\ ^{n+4}C_{n+2}&amp;^{n+5}C_{n+3}-^{n+4}C_{n+2}&amp;^{n+6}C_{n+4}-^{n+4}C_{n+2}\end{array}\right|\end{gathered} }

=n+2Cnn+3Cn+1n+4Cn+2n+3Cn+1−n+2Cnn+4Cn+2−n+3Cn+1n+5Cn+3−n+4C n+2n+4Cn+2−n+2Cnn+5Cn+3−n+3Cn+1n+6Cn+4−n+Cn+2

{\begin{gathered}=\left|\begin{array}{ccc} ^{n+2}C_{n}&amp;n+2&amp;2n+5\\ ^{n+3}C_{n+1}&amp;n+3&amp;2n+7\\ ^{n+4}C_{n+2}&amp;n+4&amp;2n+9 \end{array}\right|\end{gathered} }

=n+2Cnn+3Cn+1n+4Cn+2n+2n+3n+42n+52n+72n+9

{We\: take ^{n+2}C_{n} }n+2Cn

{common from C_{1}C1 : }

{\begin{gathered}=^{n+2}C_{n}\left|\begin{array}{ccc}1&amp;n+2&amp;2n+5\\ \frac{n+3}{n+1}&amp;n+3&amp;2n+7\\ \frac{(n+4)(n+3)}{(n+2)(n+1)}&amp;n+4&amp;2n+9\end{array}\right|\end{gathered} }

=n+2Cn1n+n+3(n+2)(n+1)(n+4)(n+3)n+2n+3n+42n+52n+72n+9

{We \: do C'_{3}\to C_{3}-2C_{2}C }

3′→C3−2C2 :

{\begin{gathered}=^{n+2}C_{n}\left|\begin{array}{ccc}1&amp;n+2&amp;1\\ \frac{n+3}{n+1}&amp;n+3&amp;1\\ \frac{(n+4)(n+3)}{(n+2)(n+1)}&amp;n+4&amp;1\end{array}\right|\end{gathered} }

=n+2Cn1n+1n+3(n+2)(n+1)(n+4)(n+3)n+2n+3n+4111

{We \: do \: R'_{2}\to R_{2}-R_{1}\:\&amp;\:R'_{3}\to R_{3}-R_{1}R }

2′→R2−R1&R3′→R3−R1 :

{\begin{gathered}=^{n+2}C_{n}\left|\begin{array}{ccc}1&amp;n+2&amp;1\\\frac{2}{n+1}&amp;1&amp;0\\ \frac{4n+10}{(n+2)(n+1)}&amp;2&amp;0\end{array}\right|\end{gathered} }

=n+2Cn1n+12(n+2)(n+1)4n+10n+212100

{ Expanding \: along C_{3}C3:}

{=^{n+2}C_{n}\big[\frac{4}{n+1}-\frac{4n+10}{(n+2)(n+1)}\big]= }n+2Cn[n+14−(n+2)(n+1)4n+10]

{=^{n+2}C_{n}.\frac{4n+8-4n-10}{(n+2)(n+1)}= }n+2Cn.(n+2)(n+1)4n+8−4n−10

{=-^{n+2}C_{n}.\frac{2}{(n+2)(n+1)}=−}

n+2Cn.(n+2)(n+1)2

{=-\frac{(n+2)(n+1)n!}{n!2!}.\frac{2}{(n+2)(n+1)}=− </p><p>n!2!}(n+2)(n+1)n!.(n+2)(n+1)2=-1=−1

Similar questions