CBSE BOARD X, asked by OoAryanKingoO79, 12 hours ago

\huge{Question}

Attachments:

Answers

Answered by OoAryanKingoO78
14

Answer:

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given : \\  \\  \rm \: y = 2 {x}^{3}   - 3 {x}^{2}  - 36x + 2 \\  \\  \sf \: we \: have \: to \: differentiate \: it \: w.r.t. \:  \:  \bf \: x \\  \\  \therefore \:  \rm \:  \frac{dy}{dx} =  \frac{d}{dx} (2 {x}^{3}   - 3 {x}^{2}  - 36x + 2) \\  \\  \pink{{\boxed{\begin{array}{cc}\bf \:we \: know \: that :  \\  \bf \:  \frac{d}{dx}(u \pm \: v) =  \frac{d}{dx}  \: u   \pm \frac{d}{dx} \:  v\end{array}}}} \\  \orange{ \sf \: apply \: this} \\  \\  \rm =  \frac{d}{dx}2 {x}^{3}  -  \frac{d}{dx}  3 {x}^{2} -  \frac{d}{dx}  36x +  \frac{d}{dx} \: 2  \\  \\  \pink{{\boxed{\begin{array}{cc}\bf \: we \: know \: that :  \\  \bf \:  \frac{d}{dx} \: [constant(c)] = 0 \\  \\  \bf \:  \frac{d}{dx}  \: c {x}^{n} = cn {x}^{n - 1}   \end{array}}}}  \\  \orange{ \sf \: apply \: this} \\  \\  \rm = 2 \times 3 \times  {x}^{3 - 1}  - 3 \times 2  \times {x}^{2 - 1}   - 36 \times  {x}^{1 - 1}  + 0 \\  \\  \rm = 6 {x}^{2}  - 6x - 36 \\  \\  \\  \\  \blue{ \boxed{\therefore \rm \:  \frac{dy}{dx}  = 6 {x}^{2} - 6x  - 36}}\end{array}}}}

Answered by Itzintellectual
1

Explanation:

Hey mate

Here is ur answer

y=2x³+3x²-36x+7 : Given

dy/dx = 0 : Given

Find y

dy/dx = 2x³+3x²-36x+7

0 =2*3*x3–1 + 3*2*x2–1 –36*x1–1 +0

0 = 6x2 + 6x - 36

0 = x2 + x -6

0 = x2 + 3x - 2x -6

0= x(x+3) -2(x+3)

0 = (x-2) (x+3)

x-2 = 0 x= 2 ; x+3=0 x= -3

y=2x³+3x²-36x+7

Consider x=2

y= 2(2)3 + 3(2)2 -36*2 +7

y= 16+12–72+7

y= 35–72

y= 37 : Final Answer

Similar questions