Business Studies, asked by OoAryanKingoO79, 11 hours ago

\huge{Question¶}

Attachments:

Answers

Answered by OoAryanKingoO78
12

Answer:

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given \: that :  \\  \\  \alpha  +  \beta  \neq \: 0 \\  \\  \sf \: also \: given :  \\  \\  \rm \: sin \:  \alpha  + sin \:  \beta  = 2 \: sin( \alpha  +  \beta ) \\  \\  \red{ \underline{ \bf \: we \: have \: to \: prove : }} \\  \\  \rm \: tan \:  \frac{ \alpha }{2}.tan \:  \frac{ \beta }{2}  =  \frac{1}{3}  \end{array}}}}

{\boxed{\boxed{\begin{array}{cc} \red { \underline{\bf \: solution}} \\  \\  \rm \: sin \:  \alpha  +  \: sin \:  \beta  = 2 \: sin( \alpha  +  \beta ) \\  \\ \orange{{\boxed{\begin{array}{cc}\bf \: we \: know :  \\  \\  \to \:  \bf \: sin \: x + sin \: y = 2 \: sin \: ( \frac{x + y}{2}) . \: cos \: ( \frac{x - y}{2}  ) \\  \\  \rm \:  \to \: sin \: 2x = 2  \: sin \: x \: cos \: x \\  \therefore \:  \rm \: sin \: x = 2 \: sin \:  \frac{x}{2} . \: cos \:  \frac{x}{2} \end{array}}}}  \\  \pink{ \sf \: apply \: this} \\  \\  \rm  \implies \:  \cancel2 \: sin \: ( \frac{ \alpha  +  \beta }{2} ). cos \: ( \frac{ \alpha  -  \beta }{2}) = \cancel 2 \times 2 \: sin ( \frac{ \alpha  +  \beta }{2}  ).cos( \frac{ \alpha  +  \beta }{2} ) \\  \\  \rm   \implies \:sin(  \frac{ \alpha  +  \beta }{2} ) \{ cos( \frac{ \alpha  -   \beta }{2}   )- 2 \: cos( \frac{ \alpha  +  \beta }{2} ) \} = 0 \\  \end{array}}}}

{\boxed{\boxed{\begin{array}{cc}\sf \: since \:  \:  \alpha  +  \beta  \neq \: 0  \:  \:  \: sin( \frac{ \alpha +   \beta }{2})  \neq0 \\  \\  \\  \therefore \:  \rm \: cos( \frac{ \alpha  -  \beta }{2} ) - 2 \: cos( \frac{ \alpha  +  \beta }{2} ) = 0 \\  \\ \orange{{\boxed{\begin{array}{cc}\bf \: we \: know: \\  \\  \rm \:  \to \: cos(x  \pm y) = cos \: x \: cos \: y \mp \: sin \: x \: sin \: y\end{array}}}} \\  \pink{ \sf \: apply \: this} \\  \\  \rm   \implies \: cos \frac{ \alpha }{2}  .cos \frac{ \beta }{2}  + sin \frac{ \alpha }{2} .sin \frac{ \beta }{2}  - 2(cos \frac{ \alpha }{2} .cos \frac{ \beta }{2}  - sin \frac{ \alpha }{2}.sin \frac{ \beta }{2} ) = 0 \\  \\  \rm   \implies \:  3 \: sin \frac{ \alpha }{2} \: sin \frac{ \beta }{2}  =  cos \frac{  \alpha }{2} .cos \frac{ \beta }{2}  \\  \\  \rm   \implies \:  \frac{sin \frac{ \alpha }{2} .sin \frac{ \beta }{2} }{cos \frac{ \alpha }{2}.cos \frac{  \beta }{2}  }   =  \frac{1}{3}  \\  \\ \rm   \implies \: tan  \: \frac{ \alpha }{2} .tan \frac{ \beta }{2}  =  \frac{1}{3}  \\  \\  \therefore \: L.H.S = R.H.S\end{array}}}}

Answered by Itzintellectual
1

Explanation:

Step-by-step explanation:

Hey mate

Here is the answer

EXPLANATION.

{\displaystyle {\begin{aligned}\tan x&{}=\sum _{n=0}^{\infty }{\frac {U_{2n+1}}{(2n+1)!}}x^{2n+1}\\[8mu]&{}=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}\left(2^{2n}-1\right)B_{2n}}{(2n)!}}x^{2n-1}\\[5mu]&{}=x+{\frac {1}{3}}x^{3}+{\frac {2}{15}}x^{5}+{\frac {17}{315}}x^{7}+\cdots ,\qquad {\text{for }}|x|<{\frac {\pi }{2}}.\end{aligned}}}{\displaystyle {\begin{aligned}\tan x&{}=\sum _{n=0}^{\infty }{\frac {U_{2n+1}}{(2n+1)!}}x^{2n+1}\\[8mu]&{}=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}\left(2^{2n}-1\right)B_{2n}}{(2n)!}}x^{2n-1}\\[5mu]&{}=x+{\frac {1}{3}}x^{3}+{\frac {2}{15}}x^{5}+{\frac {17}{315}}x^{7}+\cdots ,\qquad {\text{for }}|x|<{\frac {\pi }{2}}.\end{aligned}}}

{\displaystyle {\begin{aligned}\csc x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n+1}2\left(2^{2n-1}-1\right)B_{2n}}{(2n)!}}x^{2n-1}\\[5mu]&=x^{-1}+{\frac {1}{6}}x+{\frac {7}{360}}x^{3}+{\frac {31}{15120}}x^{5}+\cdots ,\qquad {\text{for }}0<|x|<\pi .\end{aligned}}}

{\displaystyle {\begin{aligned}\csc x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n+1}2\left(2^{2n-1}-1\right)B_{2n}}{(2n)!}}x^{2n-1}\\[5mu]&=x^{-1}+{\frac {1}{6}}x+{\frac {7}{360}}x^{3}+{\frac {31}{15120}}x^{5}+\cdots ,\qquad {\text{for }}0<|x|<\pi .\end{aligned}}}

{\displaystyle {\begin{aligned}\sec x&=\sum _{n=0}^{\infty }{\frac {U_{2n}}{(2n)!}}x^{2n}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}\\[5mu]&=1+{\frac {1}{2}}x^{2}+{\frac {5}{24}}x^{4}+{\frac {61}{720}}x^{6}+\cdots ,\qquad {\text{for }}|x|<{\frac {\pi }{2}}.\end{aligned}}}

{\displaystyle {\begin{aligned}\sec x&=\sum _{n=0}^{\infty }{\frac {U_{2n}}{(2n)!}}x^{2n}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}\\[5mu]&=1+{\frac {1}{2}}x^{2}+{\frac {5}{24}}x^{4}+{\frac {61}{720}}x^{6}+\cdots ,\qquad {\text{for }}|x|<{\frac {\pi }{2}}.\end{aligned}}}

{\displaystyle {\begin{aligned}\cot x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}2^{2n}B_{2n}}{(2n)!}}x^{2n-1}\\[5mu]&=x^{-1}-{\frac {1}{3}}x-{\frac {1}{45}}x^{3}-{\frac {2}{945}}x^{5}-\cdots ,\qquad {\text{for }}0<|x|<\pi .\end{aligned}}}

{\displaystyle {\begin{aligned}\cot x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}2^{2n}B_{2n}}{(2n)!}}x^{2n-1}\\[5mu]&=x^{-1}-{\frac {1}{3}}x-{\frac {1}{45}}x^{3}-{\frac {2}{945}}x^{5}-\cdots ,\qquad {\text{for }}0<|x|<\pi .\end{aligned}}}

Parity:

The cosine and the secant are even functions; the other trigonometric functions are odd functions. That is:

{\displaystyle {\begin{aligned}\sin(-x)&=-\sin x\\\cos(-x)&=\cos x\\\tan(-x)&=-\tan x\\\cot(-x)&=-\cot x\\\csc(-x)&=-\csc x\\\sec(-x)&=\sec x.\end{aligned}}}

{\displaystyle {\begin{aligned}\sin(-x)&=-\sin x\\\cos(-x)&=\cos x\\\tan(-x)&=-\tan x\\\cot(-x)&=-\cot x\\\csc(-x)&=-\csc x\\\sec(-x)&=\sec x.\end{aligned}}}

Periods :

All trigonometric functions are periodic functions of period 2π. This is the smallest period, except for the tangent and the cotangent, which have π as smallest period. This means that, for every integer k, one has

{\displaystyle {\begin{aligned}\sin(x+2k\pi )&=\sin x\\\cos(x+2k\pi )&=\cos x\\\tan(x+k\pi )&=\tan x\\\cot(x+k\pi )&=\cot x\\\csc(x+2k\pi )&=\csc x\\\sec(x+2k\pi )&=\sec x.\end{aligned}}}

{\displaystyle {\begin{aligned}\sin(x+2k\pi )&=\sin x\\\cos(x+2k\pi )&=\cos x\\\tan(x+k\pi )&=\tan x\\\cot(x+k\pi )&=\cot x\\\csc(x+2k\pi )&=\csc x\\\sec(x+2k\pi )&=\sec x.\end{aligned}}}

Similar questions