Math, asked by ayushgoyat, 8 months ago

\huge\red\bigstar Hello!!
•Solve sum with explanation .
•No irrevalent/unnecessary answers...otherwise reported .​

Attachments:

Answers

Answered by Anonymous
5

GIVEN :-

  • angle P = 30°

  • angle Q = 45°

  • let AB be the tree and h is the hieght of tree let X be the distance to the bottom of the tree from points Q

  • distance from the tree is 100 - x

TO FIND :-

  • hieght of tree

SOLUTION :-

  \implies \rm{in \:   \triangle \: abq \: }

we know that

\implies \boxed{ \rm{tan \: x=  \dfrac{p}{b}  }}

\implies \rm{tan \: q =  \dfrac{ab}{bq}  }

now we know that angle Q = 45°

HENCE ,

\implies \rm{tan \: 45 =  \dfrac{ab}{bq}  }

now we know that according to trignometric values :-

 \implies \boxed{ \rm{tan \: 45 = 1 }}

HENCE ,

\implies \rm{1 =  \dfrac{ab}{bq}  }

now it's given that

AB = hieght ( h )

BQ = x

 \implies \rm{ 1 =  \dfrac{h}{x} }

\implies \rm{ \bf \: h =  x} \:  \:  \:  \:  \:  \:  \:  \: (1)

  \implies \rm{in \:   \triangle \: abp \: }

we know that

\implies \boxed{ \rm{tan \: x=  \dfrac{p}{b}  }}

\implies \rm{tan \: p =  \dfrac{ab}{bp}  }

NOW we know that angle P = 30°

\implies \rm{tan \: 30  =  \dfrac{ab}{bp}  }

now ,

AB = hieght of tree (h )

and

PB + BQ = PQ

now PQ = 100 ( distance between poles )

PB + BQ = 100

PB + x = 100 ( we had taken BQ = x )

PB = 100 - x

\implies \rm{tan \: 30  =  \dfrac{h}{100 - x}  }

now we know that according to trignometric values

 \implies \boxed{ \rm{tan \: 30=  \dfrac{1}{ \sqrt{3}  \: }  }}

HENCE,

\implies \rm{ \dfrac{1}{ \sqrt{3} }   =  \dfrac{h}{100 - x}  }

\implies \rm{ \bf \: 100 - x =  h\sqrt{3}   } \:  \:  \:  \:  \:  \:  \:  \: (2)

now putting eq 1 in eq 2

\implies \rm{ \: 100 - x =  h\sqrt{3}   }

\implies \rm{ \: 100 - h =  h\sqrt{3}   }

( as according to eq 1 , h = x )

\implies \rm{ \: 100  =  h\sqrt{3}   + h }

\implies \rm{ \: 100  =  h(\sqrt{3}   + 1)}

\implies \rm{   h =  \dfrac{100}{( \sqrt{3}  + 1)} }

hence,

 \implies \boxed{ \boxed{ \rm{hieght \: of \: tree \:  =  \dfrac{100}{ (\sqrt{3} + 1) } \: m }}}

OTHER INFORMATION :-

TRIGNOMETRIC IDENTITIES

  • sin²∅ + cos²∅ = 1

  • sec²∅ - tan²∅ = 1

  • cosec²∅ - cot²∅ = 1

TRIGNOMETRIC RATIOS

  • sin ∅ = 1 / cosec ∅

  • cos ∅ = 1 / sec ∅

  • tan ∅ = 1 / cot ∅

TRIGNOMETRIC COMPLEMENTRY ANGLES

  • sin ∅ = cos ( 90 - ∅ )

  • cos ∅ = sin ( 90 - ∅ )

  • sec ∅ = cosec ( 90 - ∅ )

  • cosec ∅ = sec ( 90 - ∅ )

  • tan ∅ = cot ( 90 - ∅ )

  • cot ∅ = tan ( 90 - ∅ )
Attachments:
Similar questions