Math, asked by Mysterioushine, 9 months ago

\huge\red{\bold{\underline{\underline{Question:-}}}}

Prove that the equation, \large\rm{\sqrt{x+1}-\sqrt{x-1}\:=\:\sqrt{4x-1}} has no solution​

Answers

Answered by BrainlyPopularman
20

TO PROVE :

\bf \to{\sqrt{x+1}-\sqrt{x-1}\:=\:\sqrt{4x-1}} equation has no solution.

SOLUTION :

 \bf \implies{\sqrt{x+1}-\sqrt{x-1}\:=\:\sqrt{4x-1}}

• Square on both sides –

 \bf \implies{( \sqrt{x+1}-\sqrt{x-1} )^{2} \:=\:(\sqrt{4x-1}})^{2}

• Using identity –

 \bf \implies(a-b)^{2} \:= \:  {a}^{2} +  {b}^{2} - 2ab

 \bf \implies( \sqrt{x+1})^{2}  + (\sqrt{x-1} )^{2}  - 2( \sqrt{x + 1})( \sqrt{x - 1}) \:=\:4x-1

 \bf \implies(x + 1)+ (x - 1)- 2( \sqrt{x + 1})( \sqrt{x - 1}) \:=\:4x-1

 \bf \implies 2x- 2\sqrt{(x + 1)(x - 1)}\:=\:4x-1

• Using identity –

 \bf \implies(a + b)(a-b)\:= \:  {a}^{2}  - {b}^{2}

 \bf \implies 2x- 2\sqrt{ {x}^{2} - 1 }\:=\:4x-1

 \bf \implies 2x- 4x\:=\:2\sqrt{ {x}^{2} - 1 }-1

 \bf \implies 1 - 2x\:=\:2\sqrt{ {x}^{2} - 1 }

• Again square on both sides –

 \bf \implies (1 - 2x)^{2} \:=\:4({x}^{2} - 1)

 \bf \implies 1 + 4 {x}^{2} - 4x \:=\:4{x}^{2} - 4

 \bf \implies 1 - 4x \:=\:- 4

 \bf \implies 4x \:=\:5

 \bf \implies \large{ \boxed{ \bf x \:=\: \dfrac{5}{4}}}

VERIFICATION :

 \bf \implies{\sqrt{ \dfrac{5}{4} +1}-\sqrt{ \dfrac{5}{4} -1}\:=\:\sqrt{4  \times  \dfrac{5}{4} -1}}

 \bf \implies{\sqrt{ \dfrac{5 + 4}{4}}-\sqrt{ \dfrac{5 - 4}{4} }\:=\:\sqrt{5 -1}}

 \bf \implies{\sqrt{ \dfrac{9}{4}}-\sqrt{ \dfrac{1}{4} }\:=\:\sqrt{4}}

 \bf \implies{ \dfrac{3}{2}-\dfrac{1}{2} \:=\:2}

 \bf \implies{ \dfrac{3 - 1}{2}\:=\:2}

 \bf \implies{ \dfrac{2}{2}\:=\:2}

 \bf \implies{1\:=\:2}

 \bf \implies x =  \dfrac{5}{4} \:  \: is \:  \: not \:  \: a \:  \: solution \:  \: of \:  \: given \:  \: equation.

 \bf \implies \:\:\: Hence\:\:Proved

▪︎ Hence , Given equation have no solution.

Answered by ravanji786
5
⟹√​x+1​​​−√​x−1​​​=√​4x−1​​​

• Square on both sides –

{( \sqrt{x+1}-\sqrt{x-1} )^{2} \:=:(\sqrt{4x-1}})^{2}⟹(√​x+1​​​−√​x−1​​​)​2​​=(√​4x−1​​​)​2​​

• Using identity –

(a-b)^{2} = {a}^{2} + {b}^{2} - 2ab⟹(a−b)​2​​=a​2​​+b​2​​−2ab

( sqrt{x+1})^{2} + (sqrt{x-1} )^{2} - 2( \sqrt{x + 1})( sqrt{x - 1}) =4x-1⟹(√​x+1​​​)​2​​+(√​x−1​​​)​2​​−2(√​x+1​​​)(√​x−1​​​)=4x−1

(x + 1)+ (x - 1)- 2( sqrt{x + 1})( sqrt{x - 1}) =4x-1⟹(x+1)+(x−1)−2(√​x+1​​​)(√​x−1​​​)=4x−1

2x- 2\sqrt{(x + 1)(x - 1)}=:4x-1⟹2x−2√​(x+1)(x−1)​​​=4x−1

• Using identity –

(a + b)(a-b)= {a}^{2} - {b}^{2}⟹(a+b)(a−b)=a​2​​−b​2​​

2x- 2\sqrt{ {x}^{2} - 1 }=:4x-1⟹2x−2√​x​2​​−1​​​=4x−1

2x- 4x=2sqrt{ {x}^{2} - 1 }-1⟹2x−4x=2√​x​2​​−1​​​−1

1 - 2x=2sqrt{ {x}^{2} - 1 }⟹1−2x=2√​x​2​​−1​​​

• Again square on both sides –

(1 - 2x)^{2} =4({x}^{2} - 1)⟹(1−2x)​2​​=4(x​2​​−1)

1 + 4 {x}^{2} - 4x =4{x}^{2} - 4⟹1+4x​2​​−4x=4x​2​​−4

1 - 4x = 4⟹1−4x=−4

frac{5}{4}}}⟹​x=​4​​5​​​​​


✯ VERIFICATION :–


{\sqrt{ \dfrac{5}{4} +1}-\sqrt{ \dfrac{5}{4} -1}=:\sqrt{4 \times \dfrac{5}{4} -1}}⟹√​​4​​5​​+1​​​−√​​4​​5​​−1​​​=√​4×​4​​5​​−1​​​

{\sqrt{ \dfrac{5 + 4}{4}}-\sqrt{ \dfrac{5 - 4}{4} }\:=\:\sqrt{5 -1}}⟹√​​4​​5+4​​​​​−√​​4​​5−4​​​​​=√​5−1​​​

{\sqrt{ \dfrac{9}{4}}-\sqrt{ \dfrac{1}{4} }=:\sqrt{4}}⟹√​​4​​9​​​​​−√​​4​​1​​​​​=√​4​​​

\bf \implies{ frac{3}{2}-frac{1}{2} =2}⟹​2​​3​​−​2​​1​​=2

frac{3 - 1}{2}\:=\:2}⟹​2​​3−1​​=2

{ frac{2}{2}=2}⟹​2​​2​​=2
Similar questions