Prove that the equation, has no solution
Answers
Answered by
20
TO PROVE :–
ㅤ
equation has no solution.
ㅤ
SOLUTION :–
ㅤ
ㅤ
• Square on both sides –
ㅤ
ㅤ
• Using identity –
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
• Using identity –
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
• Again square on both sides –
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
✯ VERIFICATION :–
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
▪︎ Hence , Given equation have no solution.
Answered by
5
⟹√x+1−√x−1=√4x−1
ㅤ
• Square on both sides –
ㅤ
{( \sqrt{x+1}-\sqrt{x-1} )^{2} \:=:(\sqrt{4x-1}})^{2}⟹(√x+1−√x−1)2=(√4x−1)2
ㅤ
• Using identity –
ㅤ
(a-b)^{2} = {a}^{2} + {b}^{2} - 2ab⟹(a−b)2=a2+b2−2ab
ㅤ
( sqrt{x+1})^{2} + (sqrt{x-1} )^{2} - 2( \sqrt{x + 1})( sqrt{x - 1}) =4x-1⟹(√x+1)2+(√x−1)2−2(√x+1)(√x−1)=4x−1
ㅤ
(x + 1)+ (x - 1)- 2( sqrt{x + 1})( sqrt{x - 1}) =4x-1⟹(x+1)+(x−1)−2(√x+1)(√x−1)=4x−1
ㅤ
2x- 2\sqrt{(x + 1)(x - 1)}=:4x-1⟹2x−2√(x+1)(x−1)=4x−1
ㅤ
• Using identity –
ㅤ
(a + b)(a-b)= {a}^{2} - {b}^{2}⟹(a+b)(a−b)=a2−b2
ㅤ
2x- 2\sqrt{ {x}^{2} - 1 }=:4x-1⟹2x−2√x2−1=4x−1
ㅤ
2x- 4x=2sqrt{ {x}^{2} - 1 }-1⟹2x−4x=2√x2−1−1
ㅤ
1 - 2x=2sqrt{ {x}^{2} - 1 }⟹1−2x=2√x2−1
ㅤ
• Again square on both sides –
ㅤ
(1 - 2x)^{2} =4({x}^{2} - 1)⟹(1−2x)2=4(x2−1)
ㅤ
1 + 4 {x}^{2} - 4x =4{x}^{2} - 4⟹1+4x2−4x=4x2−4
ㅤ
1 - 4x = 4⟹1−4x=−4
ㅤ
frac{5}{4}}}⟹x=45
ㅤ
✯ VERIFICATION :–
ㅤ
{\sqrt{ \dfrac{5}{4} +1}-\sqrt{ \dfrac{5}{4} -1}=:\sqrt{4 \times \dfrac{5}{4} -1}}⟹√45+1−√45−1=√4×45−1
ㅤ
{\sqrt{ \dfrac{5 + 4}{4}}-\sqrt{ \dfrac{5 - 4}{4} }\:=\:\sqrt{5 -1}}⟹√45+4−√45−4=√5−1
ㅤ
{\sqrt{ \dfrac{9}{4}}-\sqrt{ \dfrac{1}{4} }=:\sqrt{4}}⟹√49−√41=√4
ㅤ
\bf \implies{ frac{3}{2}-frac{1}{2} =2}⟹23−21=2
ㅤ
frac{3 - 1}{2}\:=\:2}⟹23−1=2
ㅤ
{ frac{2}{2}=2}⟹22=2
ㅤ
• Square on both sides –
ㅤ
{( \sqrt{x+1}-\sqrt{x-1} )^{2} \:=:(\sqrt{4x-1}})^{2}⟹(√x+1−√x−1)2=(√4x−1)2
ㅤ
• Using identity –
ㅤ
(a-b)^{2} = {a}^{2} + {b}^{2} - 2ab⟹(a−b)2=a2+b2−2ab
ㅤ
( sqrt{x+1})^{2} + (sqrt{x-1} )^{2} - 2( \sqrt{x + 1})( sqrt{x - 1}) =4x-1⟹(√x+1)2+(√x−1)2−2(√x+1)(√x−1)=4x−1
ㅤ
(x + 1)+ (x - 1)- 2( sqrt{x + 1})( sqrt{x - 1}) =4x-1⟹(x+1)+(x−1)−2(√x+1)(√x−1)=4x−1
ㅤ
2x- 2\sqrt{(x + 1)(x - 1)}=:4x-1⟹2x−2√(x+1)(x−1)=4x−1
ㅤ
• Using identity –
ㅤ
(a + b)(a-b)= {a}^{2} - {b}^{2}⟹(a+b)(a−b)=a2−b2
ㅤ
2x- 2\sqrt{ {x}^{2} - 1 }=:4x-1⟹2x−2√x2−1=4x−1
ㅤ
2x- 4x=2sqrt{ {x}^{2} - 1 }-1⟹2x−4x=2√x2−1−1
ㅤ
1 - 2x=2sqrt{ {x}^{2} - 1 }⟹1−2x=2√x2−1
ㅤ
• Again square on both sides –
ㅤ
(1 - 2x)^{2} =4({x}^{2} - 1)⟹(1−2x)2=4(x2−1)
ㅤ
1 + 4 {x}^{2} - 4x =4{x}^{2} - 4⟹1+4x2−4x=4x2−4
ㅤ
1 - 4x = 4⟹1−4x=−4
ㅤ
frac{5}{4}}}⟹x=45
ㅤ
✯ VERIFICATION :–
ㅤ
{\sqrt{ \dfrac{5}{4} +1}-\sqrt{ \dfrac{5}{4} -1}=:\sqrt{4 \times \dfrac{5}{4} -1}}⟹√45+1−√45−1=√4×45−1
ㅤ
{\sqrt{ \dfrac{5 + 4}{4}}-\sqrt{ \dfrac{5 - 4}{4} }\:=\:\sqrt{5 -1}}⟹√45+4−√45−4=√5−1
ㅤ
{\sqrt{ \dfrac{9}{4}}-\sqrt{ \dfrac{1}{4} }=:\sqrt{4}}⟹√49−√41=√4
ㅤ
\bf \implies{ frac{3}{2}-frac{1}{2} =2}⟹23−21=2
ㅤ
frac{3 - 1}{2}\:=\:2}⟹23−1=2
ㅤ
{ frac{2}{2}=2}⟹22=2
Similar questions