Math, asked by Braɪnlyємρєяσя, 4 months ago



\huge\red{\boxed{\blue{\mathcal{\overbrace{\underbrace{\fcolorbox{blue}{aqua}{\underline{\red{QUESTIONS}}}}}}}}}



prove that :-

 \frac{1 +  \ \sec 2A }{ \tan2 \: a }  =  \cot a
➝ REQUIRED GOOD ANSWER ✔​

Answers

Answered by XxMrsZiddixX
16

Refer To The Above Attachment.!

Hope It Helps You

Have A Sweet Day⚡

Attachments:
Answered by BrainlyUnnati
19

\huge\red{\boxed{\blue{\mathcal{\overbrace{\underbrace{\fcolorbox{blue}{aqua}{\underline{\red{QuestioN}}}}}}}}}

Prove that :-

\frac{1+sec2A}{tan2a} =\:cot \:a

\huge\red{\boxed{\blue{\mathcal{\overbrace{\underbrace{\fcolorbox{blue}{aqua}{\underline{\red{SolutioN}}}}}}}}}

LHS = \frac{1+tan^2A}{1+cot^2A}

                                                 [ ∴sec²A - tan²A = 1, and cosse²A - cot²A=1 ]

       = \frac{sec^2A}{cossee^2A}

       = \frac{sec^2A}{cos^2A}

       = (\frac{sinA}{losA} )^2\:\:\:\:\:\:=\:tan^2A

MHS = (\frac{1-tanA}{1-cotA} )^2

        = [\frac{1-tanA}{1-\frac{1}{tanA} } ]^2

       = [\frac{1-tanA}{-(1-tanA)} *tanA]^2\:\:\:\:\:\:=tan^2A

∴ LHS = MHS = RHS        [ Proved ]

∴Hence, Proved

"See the given attachment".

If you don't understand plz then Kindly see the given attachment.

Attachments:
Similar questions