Physics, asked by MysteriousAryan, 6 months ago

\huge\red{\boxed{\sf QuEStiON}}


A capacitor, made of two parallel plates each of plate area A and separation d, is being charged by an external ac source. Show that the displacement current inside the capacitor is the same as the current charging the capacitor.​

Answers

Answered by khushnoorsidhuys
4

Explanation:

doneeeeeeeeeeeeeeeeeeeeee

Attachments:
Answered by sk181231
5

Answer:

\sf\bold\red{AnswEr}

</p><p>TD = ε0dμEdt \\  \\ let \:  the  \: altering  \: emf  \: charging  \: the \:  plates  \: of  \: capacitor mbem E=E0 \: sinωt. \\  \\ charge \:  on \:  the \:  capacitor \:  q=EC=CE0 \: sinωt \\  \\ I =  \frac{dq}{dt}  =  \frac{d}{dt} </p><p>(CE0sinωt)=ωCE0cosωt=I0cosωt \:  \: (where \: I0=ωCE0) \\  \\ Displacement  \: current \\  \\ ID=ε0 \frac{dψ</p><p>E</p><p>}{dt} =ε0A \frac{dE}{dt} =ε0A \frac{d( \frac{q}{ε0A}) }{dt} ( \frac{CE0sinωt}{ε0A} )</p><p></p><p></p><p></p><p></p><p> \\  \\  =  \frac{ d}{dt} (CE0sinωt) = ωCE0cosωt=I0cosωt \\  \\ Thus  \: the  \: displacement \:  current \:  inside \:  the \:  capacitor  \: is  \: the  \: same \:  as  \: current  \: charging \:  the  \: capacitor.</p><p></p><p>

Similar questions