Math, asked by MysteriousAryan, 1 month ago

\huge\red{\boxed{\sf QuEsTioN}}

Determine the derivative of cosx/(1+sin x)​

Answers

Answered by nish5555568656
2

Answer:

Determine the derivative of cosx/(1+sin x)

Step-by-step explanation:

please bhaiya please mark me as brainliest

and give thanks bhaiya I really need it

please

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\dfrac{cosx}{1 + sinx}

Let assume that

\rm :\longmapsto\:y \:  =  \: \dfrac{cosx}{1 + sinx}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y \:  =\dfrac{d}{dx} \:   \: \dfrac{cosx}{1 + sinx}

We know,

\boxed{ \rm \:\dfrac{d}{dx} \frac{u}{v}  \:  =  \:  \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{(1 + sinx)\dfrac{d}{dx}cosx \:  -  \: cosx\dfrac{d}{dx}(1 + sinx)}{ {(1 + sinx)}^{2} }

We know,

\boxed{ \rm \:\dfrac{d}{dx}sinx = cosx}

and

\boxed{ \rm \:\dfrac{d}{dx}cosx =  -  \: sinx}

\rm \:  =  \: \dfrac{(1 + sinx)( - sinx) - cosx(0 + cosx)}{ {(1 + sinx)}^{2} }

\rm \:  =  \: \dfrac{ - sinx -  {sin}^{2} x -  {cos}^{2} x}{ {(1 + sinx)}^{2} }

\rm \:  =  \: \dfrac{ - sinx -  ({sin}^{2} x +  {cos}^{2} x)}{ {(1 + sinx)}^{2} }

\rm \:  =  \: \dfrac{ - sinx -  (1)}{ {(1 + sinx)}^{2} }

\rm \:  =  \: \dfrac{ - sinx -  1}{ {(1 + sinx)}^{2} }

\rm \:  =  \: \dfrac{ - (sinx + 1)}{ {(1 + sinx)}^{2} }

\rm \:  =  \:  -  \: \dfrac{1}{1 + sinx}

\bf\implies \:\dfrac{dy}{dx}=  \:  -  \: \dfrac{1}{1 + sinx}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions