Math, asked by MysteriousAryan, 7 hours ago

\huge\red{\boxed{\sf QuEsTioN}}

Differentiate the function: cos (x²+1).​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:cos( {x}^{2} + 1)

Let assume that

\rm :\longmapsto\:y \:  =  \: cos( {x}^{2} + 1)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y \:  =  \: \dfrac{d}{dx} \: cos( {x}^{2} + 1)

We know,

\boxed{ \rm \:\dfrac{d}{dx}cosx \:  =  \:  -  \: sinx}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =  \:  -  \: sin( {x}^{2} + 1)\dfrac{d}{dx}( {x}^{2} + 1)

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =  \:  -  \: sin( {x}^{2} + 1)\bigg[\dfrac{d}{dx}{x}^{2} + \dfrac{d}{dx}1\bigg]

We know,

\boxed{ \rm \:\dfrac{d}{dx} {x}^{n} = n {x}^{n - 1}}

and

\boxed{ \rm \:\dfrac{d}{dx}k \:  =  \: 0}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  \:  -  \: sin( {x}^{2} + 1)\bigg[ {2x}^{2 - 1} + 0\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} =  \:  -  \: sin( {x}^{2} + 1)\bigg[ {2x}^{1}\bigg]

\bf\implies \:\dfrac{dy}{dx} \:  =  \:  -  \: 2x \: sin( {x}^{2} + 1)

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by ItzImran
27

\huge\color{aqua}\ \boxed{\colorbox{black}{Answer : ♞ }}</p><p>.

\left(-\sin(x^{2}+1)\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+1)

The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.

\left(-\sin(x^{2}+1)\right)\times 2x^{2-1}

SIMPLIFY:

\left(-2x\right)\sin(x^{2}+1)

Similar questions