Math, asked by MysteriousAryan, 1 month ago

\huge\red{\boxed{\sf QuEsTioN}}


Find the positive integer “n” so that lim x → 3[(xn– 3n)/(x – 3)] = 108​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 3} \frac{ {x}^{n}  -  {3}^{n} }{x - 3}  = 108}

We know that,

\boxed{ \rm \:\displaystyle\lim_{x \to a } \frac{ {x}^{n}  -  {a}^{n} }{x - a} =  {na}^{n - 1}}

So, using this, we get

\rm :\longmapsto\: {n3}^{n - 1} = 108

\rm :\longmapsto\: {n3}^{n - 1} = 3 \times 3 \times 3 \times  4

\rm :\longmapsto\: {n3}^{n - 1} = 4 \times  {3}^{3}

\rm :\longmapsto\: {n3}^{n - 1} = 4 \times  {3}^{4 - 1}

So, on comparing, we get

\bf\implies \:n = 4

Additional Information :-

\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1}

\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1}

\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1}

\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1}

\boxed{ \rm \:\displaystyle\lim_{x \to 0} \frac{ {a}^{x}  - 1}{x} = loga}

Similar questions