If Tan(A)=n Tan(B) and Sin(A)=m Sin(B)
Then,
Prove that
Cos²(A)=m²-1 n²-1
Answers
Answer:
We have,
tan α = n tan β
⇒ tan β = tan α/n
⇒ cot β = n/tan α
sin α = m sin β
⇒ sin β = sin α/m
⇒ cosec β = m/sin α
Since ,
cosec2 β – cot2 β = 1
⇒ m2/sin2 α – n2/tan2 α = 1
⇒ m2/sin2 α – n2 cos2 α/sin2 α = 1
⇒ m2 – n2 cos2 α = sin2 α
⇒ m2 – n2 cos2 α = 1 – cos2 α
⇒ m2 – 1 = (n2 – 1) cos2 α
⇒ cos2 α = (m2 – 1)/(n2 – 1)
Hence proved.
Answer:
In this question we have to find cos A in terms of m and n, so we have to eliminate ZB from the given relations.
tan A = n tan B tan B = 1/n tan A
Cot B = n /tan A [ cot B = 1/tan B]
sin A = m sinB sin B = 1/m sinA
cosec B = m/ sinA
cosec?A - cot B =1
Substitute the value of cot B and cosec B in the above relation.
(m/ sinA) - (n /tan A)? (m2 / sin A) - (n? /tan? A) (m? / sin?A) - (n? /(sin?A / cos A))
[ tan A = sinA / cosA]
(m? / sin?A) - n°cos?A / sin?A = 1 m2 - n?cos?A = sin?A =
m? - n?cos?A = 1- cos a
(m² / sin?A) - (n? /(sin?A / cos A))
[ tan A = sinA / cosA]
(m2 / sin?A) - n°cos A/ sin?A = 1 m? - n°cosA = sin?A =
m? - n?cos?A = 1- cos?A
[sin°A = 1- cos A]
m2 -1 = n°cos A - cos?A m2 - 1= cos 2A(n2 -1)
cos?A = m2 -1/ n²-1
HOPE THIS WILL HELP YOU...