Math, asked by MysteriousAryan, 5 hours ago


\huge\red{\boxed{\sf QuEsTioN}}


limx→ 0 |x|/x is equal to:

(a)1 (b)-1 (c)0 (d)does not exists​

Answers

Answered by MathHacker001
5

Question :-

\displaystyle\lim_{x \to 0 }  \rm{\frac{ |x| }{x}  }

Solution :-

 \longrightarrow\rm{for \: x < 0, \frac{ |x| }{x} =  \frac{ - x}{x}  =  - 1 } \\  \\  \rm \longrightarrow{for \: x > 0, \frac{ |x| }{x}  =  \frac{x}{x} = 1 } \:  \:  \:  \:  \:  \:

Thus,

 \longrightarrow \rm{ \displaystyle \lim_{x \to0 {}^{ - } }  \rm{\frac{ |x| }{x}   =  - 1 }} \\  \\  \longrightarrow \rm{ \displaystyle \lim_{x \to0 {}^{  +  } }  \rm{\frac{ |x| }{x}   =   1 }} \:  \:  \:

So limit doesn't exist.

Option (D) is the right answer.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{ |x| }{x}

We know,

Limit of a function f(x) at x = a exist iff

\boxed{ \rm \:\displaystyle\lim_{x \to a^ + } \: f(x) \:  =  \: \displaystyle\lim_{x \to a^ - } \: f(x)}

Now, Consider

Left Hand Limit

\rm :\longmapsto\:\displaystyle\lim_{x \to 0^ - } \frac{ |x| }{x}

To evaluate this,

\red{\rm :\longmapsto\:Put \: x = 0 - h =  - h}

\red{\rm :\longmapsto\:As \: x \:  \to \: 0 \:  \: so \: h \:  \to \: 0}

So, above limit can be rewritten as

 \rm \:  =  \: \displaystyle\lim_{h \to 0} \:  \frac{ |0 - h| }{ - h}

 \rm \:  =  \: \displaystyle\lim_{h \to 0} \:  \frac{ |- h| }{ - h}

 \rm \:  =  \: \displaystyle\lim_{h \to 0} \:  \frac{h}{ - h}

\rm \:  =  \:  -  \: 1

So,

\rm :\longmapsto\:\boxed{ \rm \:\displaystyle\lim_{x \to 0^ - } \frac{ |x| }{x} \:   =  \:  -  \: 1} -  -  - (1)

Now, Consider

Right Hand Limit

\rm :\longmapsto\:\displaystyle\lim_{x \to 0^ + } \frac{ |x| }{x}

To evaluate this limit,

\red{\rm :\longmapsto\:Put \: x = 0  +  h =  h}

\red{\rm :\longmapsto\:As \: x \:  \to \: 0 \:  \: so \: h \:  \to \: 0}

So, above limit can be rewritten as

 \rm \:  =  \: \displaystyle\lim_{h \to 0} \:  \frac{ |0 + h| }{0 + h}

 \rm \:  =  \: \displaystyle\lim_{h \to 0} \:  \frac{ |h| }{ h}

 \rm \:  =  \: \displaystyle\lim_{h \to 0} \:  \frac{ h}{ h}

 \rm \:  =  \: 1

So,

\rm :\longmapsto\:\boxed{ \rm \:\displaystyle\lim_{x \to 0^ + } \frac{ |x| }{x} \:   =   \: 1} -  -  - (2)

So, from equation (1) and (2), we concluded that

\rm :\longmapsto\:\displaystyle\lim_{h \to 0^ - } \frac{ |x| }{x}  \:  \ne \: \displaystyle\lim_{h \to 0^ + } \frac{ |x| }{x}

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{ |x| }{x}  \sf \: does \: not \: exist.

  • So, Option (d) is correct

Similar questions