Math, asked by MysteriousAryan, 1 month ago

\huge\red{\boxed{\sf QuEsTIoN}}

The ratio of the A.M and G.M of two positive numbers a and b, is m:n. Show that

a:b=(m +   \sqrt{{ {m}^{2} }  -  {n}^{2}} ):(m  -  \sqrt{{ {m}^{2}}  -  {n}^{2}} )\  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{A.M\,\,:\,\,G.M=m\,\,:\,\,n}

Now,

\sf{A.M=\dfrac{a+b}{2}\,\,\,\,\,\,and\,\,\,\,\,\,G.M=\sqrt{ab}}

\tt{\implies\,\dfrac{a+b}{2}\,\,:\,\,\sqrt{ab}=m\,\,:\,\,n}

\tt{\implies\,\dfrac{a+b}{2\sqrt{ab}}=\dfrac{m}{n}}

\tt{\implies\,\dfrac{(a+b)^2}{4ab}=\dfrac{m^2}{n^2}\,\,\,\,\,\,\,\,...(1)}

\tt{\implies\,\dfrac{a^2+b^2+2ab}{4ab}=\dfrac{m^2}{n^2}}

Using the Dividendo rule

\tt{\implies\,\dfrac{a^2+b^2+2ab-4ab}{4ab}=\dfrac{m^2-n^2}{n^2}}

\tt{\implies\,\dfrac{a^2+b^2-2ab}{4ab}=\dfrac{m^2-n^2}{n^2}}

\tt{\implies\,\dfrac{(a-b)^2}{4ab}=\dfrac{m^2-n^2}{n^2}\,\,\,\,\,\,\,\,...(2)}

Divide (1) by (2)

\tt{\implies\,\dfrac{(a+b)^2}{(a-b)^2}=\dfrac{m^2}{m^2-n^2}}

\tt{\implies\,\dfrac{a+b}{a-b}=\dfrac{m}{\sqrt{m^2-n^2}}}

Applying componendo and dividendo,

\tt{\implies\,\dfrac{a+b+a-b}{a+b-a+b}=\dfrac{m+\sqrt{m^2-n^2}}{m-\sqrt{m^2-n^2}}}

\tt{\implies\,\dfrac{2a}{2b}=\dfrac{m+\sqrt{m^2-n^2}}{m-\sqrt{m^2-n^2}}}

\tt{\implies\,\dfrac{a}{b}=\dfrac{m+\sqrt{m^2-n^2}}{m-\sqrt{m^2-n^2}}}

\tt{\implies\,a:b=\left(m+\sqrt{m^2-n^2}\right):\left(m-\sqrt{m^2-n^2}\right)}

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

The ratio of the A.M and G.M of two positive numbers a and b, is m:n.

\rm \implies\:\dfrac{A.M}{G.M}  = \dfrac{m}{n}

We know,

\boxed{ \tt{ \: A.M =  \frac{a + b}{2} \: }} \:  \\  \\ \boxed{ \tt{ \: G.M =  \sqrt{ab}  \: }} \\

So,

\rm :\longmapsto\:\dfrac{a + b}{2 \sqrt{ab} }  = \dfrac{m}{n}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{a + b + 2 \sqrt{ab} }{a + b - 2 \sqrt{ab} }  = \dfrac{m + n}{m - n}

can be rewritten as

\rm :\longmapsto\:\dfrac{ {( \sqrt{a} )}^{2}  +  {( \sqrt{b} )}^{2}  + 2 \sqrt{ab} }{ {( \sqrt{a} )}^{2}  +  {( \sqrt{b} )}^{2}  - 2 \sqrt{ab} }  = \dfrac{m + n}{m - n}

We know,

\boxed{ \tt{ \:  {x}^{2} +  {y}^{2} + 2xy =  {x + y)}^{2} \: }} \\  \\ \boxed{ \tt{ \:  {x}^{2} +  {y}^{2} - 2xy =  {(x - y)}^{2} \: }} \\

So, using these, we get

\rm :\longmapsto\:\dfrac{ {( \sqrt{a}  +  \sqrt{b} )}^{2} }{ {( \sqrt{a}  -  \sqrt{b} )}^{2} }  = \dfrac{m + n}{m - n}

\rm \implies\:\dfrac{ \sqrt{a}  +  \sqrt{b} }{ \sqrt{a}  -  \sqrt{b} }  = \dfrac{ \sqrt{m + n} }{ \sqrt{m - n} }

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{ \sqrt{a}  +  \sqrt{b}  +  \sqrt{a}  -  \sqrt{b} }{ \sqrt{a} +  \sqrt{b}  - \sqrt{a} +  \sqrt{b} }  = \dfrac{ \sqrt{m + n}  +  \sqrt{m - n} }{ \sqrt{m + n} -  \sqrt{m - n} }

\rm :\longmapsto\:\dfrac{2\sqrt{a}}{2\sqrt{b} }  = \dfrac{ \sqrt{m + n}  +  \sqrt{m - n} }{ \sqrt{m + n} -  \sqrt{m - n} }

\rm :\longmapsto\:\dfrac{\sqrt{a}}{\sqrt{b} }  = \dfrac{ \sqrt{m + n}  +  \sqrt{m - n} }{ \sqrt{m + n} -  \sqrt{m - n} }

On squaring both sides, we get

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{ {[ \sqrt{m + n}  +  \sqrt{m - n}]}^{2} }{[ \sqrt{m + n} -  \sqrt{m - n}]^{2} }

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{m + n + m - n + 2 \sqrt{m + n} \sqrt{m - n} }{m + n + m - n - 2 \sqrt{m + n} \sqrt{m - n} }

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{2m + 2 \sqrt{ {m}^{2}-{n}^{2}}}{2m - 2 \sqrt{ {m}^{2}-{n}^{2}}}

\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{a}{b}  = \dfrac{m + \sqrt{ {m}^{2}-{n}^{2}}}{m - \sqrt{ {m}^{2}-{n}^{2}}}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

If a and b are two positive real numbers, then

\boxed{ \tt{ \: A.M =  \frac{a + b}{2} \: }} \:  \\  \\ \boxed{ \tt{ \: G.M =  \sqrt{ab}  \: }} \\  \\ \boxed{ \tt{ \: H.M =  \frac{2ab}{a + b} \: }} \\

\boxed{ \tt{ \: A.M \geqslant G.M \geqslant H.M \: }}

\boxed{ \tt{ \:  {(G.M)}^{2}  = (A.M)(H.M) \: }}

Similar questions