Math, asked by Anonymous, 4 months ago


\huge\red{{\fcolorbox{blue}{aqua}{\underline{\red{Question}}}}}

\sf\pink{Trigonometry Table}
\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}


 \sf{prove }  \: {tan \phi \div1 - cot \phi + cot \phi \div1 - tan \phi}
 \sf{ = 1 + tan \phi \ + cot \phi}

Attachments:

Answers

Answered by bhayanajiya
15

Answer:

Hey!

Pls refer to the attatched image for answer

Attachments:
Answered by ItzMrSwaG
37

\huge\sf \pmb{\orange {\underline  \pink{\underline{\:Ꭺ ꪀ \mathfrak ꕶ᭙ꫀя  \:  }}}}

Attchement

Attachments:
Similar questions