Math, asked by XxMissInnocentxX, 2 months ago


 \huge \red{Question - }
Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using a similarity criterion for two triangles, show that AO/OC = OB/OD.

★Don't Spam
★No Copied Answer ​

Answers

Answered by iTzShInNy
3

 \rm \leadsto \bigstar{Concept} \\

Here, the above query said that A Trapezium ABCD having it's sides AB & CD are parallel to each other. And it's two diagonals AC & BD are interesting each other at O.

How to do?

Here, we have to prove that Area ofAOB and Area of COD is equal. There are total three triangle Similarity theorem . They are :- i) Angle - Angle - Angle ( AAA ) , ii) Side - Side - Side ( SSS ) , iii) Side - Angle - Side ( SAS ) . Here AAA triangle Similarity theorem is used.

 \rm \leadsto \bigstar{The \: Question \: is \: Given \: that} \\

 \rm Diagonals  \: AC \: and \: BD \: of a \: trapezium \quad \quad \\  \rm ABCD \: with \: AB//DC \: intersect \: each \: other  \\  \rm at \: the \: point \: O. \: Using\: a \: similarity \: criterion \\  \rm for \: two \: triangles \: . \: Show  \: the  \: \frac{AO }{OC}  =  \frac{OB}{OD} . \\

\rm \leadsto \bigstar{Full \: Solution \: With  \: Explaination} \\

 \rm  { \red{ \underline {Given \: that}}} \\

 \rm ✦ ABCD  \: is \: a  \: trapezium   \quad \quad \quad \quad \quad \quad \quad \:  \:  \:  \:   \:  \:  \:  \:  \:   \: \\  \rm✦AB// AD \: \quad  \quad \quad \quad \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \quad \quad\quad  \\  \rm✦ Diagonals \: AB  \: and \: CD \: are \: intersecting \: at \: O \\

\rm  { \red{ \underline {To \: Prove}}} \\

 \rm  \frac{AO}{OC}  =  \frac{OB}{OD} \\

\rm  { \red{ \underline {Proof}}} \\

 \rm In \:   △\: AOB  \: and \:△ \:  COD \\

 \rm i)  \:  ∠AOB =   ∠ COD \:  ( Vertically \: opposite \: angles \: are \: equal) \\

\rm ii)  \:  ∠OBA=   ∠ ODC \:  ( Alternate \: interior \: angles \: are \: equal) \\

\rm iii)  \:  ∠OAB =   ∠OCD \:  ( Alternate \: interior\: angles \: are \: equal) \\

 \sf△AOB ∼△COD \: (By  \: AAA \: Similarity)

 \\

\rm \leadsto \bigstar{Diagram} \\

 \rm \: in \: the \: above \: attachment

 \\

Attachments:
Answered by XxItzAdyashaxX
1

 \huge \red{ANSWER - }

ABCD is a trapezium with AB∥CD and diagonals AB and CD intersecting at O.

⇒ In △OAB and △OCD

⇒ ∠AOB=∠DOC [ Vertically opposite angles ]

⇒ ∠ABO=∠CDO [ Alternate angles ]

⇒ ∠BAO=∠OCD [ Alternate angles ]

∴ △OAB∼△OCD [ AAA similarity ]

We know that if triangles are similar, their corresponding sides are in proportion.

 \frac{oa}{oc}   =  \frac{ob}{od} \\ [ Hence, Proved]

Adyasha here

Attachments:
Similar questions