English, asked by PRATHAMABD, 10 months ago

________________________

\huge\red{(メ メ メ) }
________________________


Bonjour°==

Solve This Please (⊙_◎)
_/\_​

Attachments:

Answers

Answered by Saby123
3

First, find the lengths of the region for the perimeter.

Perimeter = AB + PB + Arc AP.

First, find the Arc length AP.

AP =

 \frac{ \theta }{360}  \times 2\pi \: r =  \frac{   \theta \: \pi \: r}{180}

Now, in right angled triangle OAB,

 \tan( \theta )  =  \frac{ab}{r}

AB = r tan{\theta}

 \sec( \theta )  =  \frac{ob}{r}

OB = r sec {\theta }

OB = OP + PB.

</p><p>{\underline {\therefore {\red{PB \: = \: r sec ( \theta ) - r }}}}</p><p>

Now substituting the values, we get

Perimeter =

r \:  \tan(   \theta  )  + r \:  \sec( \theta)  -  \: r \:  +  \frac{\pi. \theta .r }{180}

 = r . \: ( \tan( \theta )  +  \sec( \theta)  +  \frac{\pi \theta}{180}  - 1)

</p><p>\huge{\fbox{\fbox{\bigstar{\mathfrak{\blue{Hence \: Proved }}}}}}

Similar questions