Physics, asked by shana65, 10 months ago

\huge\red{\tt Attention}

A harmonic oscillator of force constant 4×10^6Nm^-1 and amplitude 0.01m has total energy 240J . What is maximum Kinetic Energy and minimum Potential Energy.​

Answers

Answered by Anonymous
31

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf K_{max}=200J}}

\large\red{\boxed{\sf U_{min}=40J }}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Force constant (k) = \sf{4×10^6Nm^{-1}}

  • Amplitude (A) = 0.01 m

  • Total Energy (TE) = 240J

\large\underline\pink{\sf To\:Find: }

  • Maximum Kinetic Energy (\sf{K_{max}})=?

  • Minimum Potential Energy (\sf{U_{min}})=?

━━━━━━━━━━━━━━━━━━━━━━━━━━

Angular Velocity (\sf{\omega}):

\large{\boxed{\sf \omega=\frac{k}{m}}}

Therefore k= m{\omega^2}

\large\underline{\underline{\sf Maximum\:Kinetic\:Energy(K_{max})}}

\large{\boxed{\sf K_{max}=\frac{1}{2}m\omega^2A^2}}

\large\implies{\sf K_{max}=\frac{1}{2}×4×10^6×(0.01)^2 }

\large\implies{\sf K_{max}=200J}

\large\red{\boxed{\sf K_{max}=200J}}

\large\underline{\underline{\sf Minimum\: Potential\:Energy(U_{min})}}

{\boxed{\sf U_{min}=Total\: Energy-Maximum\:Kinetic\: Energy}}

\large\implies{\sf U_{min}=240-200 }

\large\implies{\sf U_{min}=40J}

\large\red{\boxed{\sf U_{min}=40J }}

Hence ,

Maximum Kinetic Energy is 200J and minimum Potential Energy is 40J

Answered by IamIronMan0
7

Answer:

That will be

p.e. =  \frac{1}{2} k {x}^{2}  =  \frac{1}{2}  \times 4 \times  {10}^{6}  \times (0.01) {}^{2}  = 200j

So Maximum potential energy will be 200 J.

Maximum Kinetic Energy =200 J

40 J energy is of some other kind

Similar questions