Math, asked by uuu74, 11 months ago

\huge\red{\underbrace{\overbrace{\ulcorner{\mid{\overline{\underline{Explanation\:Required}}}}}}}

\huge{\fbox{\fbox{\green{\mathfrak{Question\:Above}}}}}

Attachments:

Answers

Answered by Vindicta
1

(16)^2m (64)^4 / (256)^2 = (256)^3m

(16)^2m (64)^4 = (256)^3m × (256)^2

(16)^2m (64)^4 =(256)^3m+2

(16)^2m (64)^4 = (16)^6m+4 {16^2 =256}

(64)^4 =(16)^6m+4 / (16)^2m

(64)^4=(16)^(6m+4-2m)

(64)^4=(16)^4m+4

(4)^4×3=(4)^8m+8 {64=16×4=4^2 ×4=4^3}

comparing the exponents or powers when base is same

we get

8m+8=12

8m=4

m=1/2

I hope it helps

Answered by brahmishtha
3

Answer:

take (256)^2 to the RHS (right side)

AT right side -

=256^{2}  * 256^{3m}\\= 256^{2+3m}\\= 4^{4*(2+3m)}\\= 4^{8+12m}\\                   m^a * m^b   (identity)\\\\= m^{a+b}\\\\                (m^a)^b        (identity)\\= m^{ab}

At left side-

=16^{2m} * 64^{4}\\= 4^ {2*(2m)} * 4^{3*(4)}\\= 4^{4m} * 4^{12}\\= 4^{4m+12}                   m^a * m^b  (identity)\\\\= m^{a+b}\\\\                 (m^a)^b      (identity)\\= m^{ab}

       

NOW EQUATE LEFT SIDE TO RIGHT SIDE

4^{8+12m} = 4^{4m+12}\\or       8+12m = 4m+12\\\\          8-12=4m-12m\\           -4=-8m\\           4=8m\\            m=1/2

I HOPE IT IS CORRECT!

Similar questions