Determine the real numbers x and y if (x-iy)(3+5i) is the conjugate of -6-24i.
⚠️ Dᴏɴ'ᴛ Sᴘᴀᴍ ⚠️
Answers
conjugate of ( - 6 -24i) = ( -6 +24i)
A/C to question ,
(x -iy)(3 + 5i) = conjugate of ( - 6 -24i)
{x(3 + 5i) -iy(3 + 5i) } = ( - 6 +24i)
3x + 5xi -3yi +5y = (- 6 +24i)
(3x + 5y) + (5x - 3y)i = (- 6 + 24i)
so,
3x + 5y = - 6 ------(1)
5x -3y = 24 --------(2)
solve eqn (1) and (2)
9x + 25x = -18 + 120
34x = 102
x = 3 put this in eqn (1)
3(3 ) + 5y = -6
5y = -15
y = -3
hence, x = 3 and y = -3
Answer:
Answer
Given: (x−iy)(3+5i)=
(−6−24i)
⇒(3x+5y)+i(5x−3y)=−6+24i
Equating real and imaginary parts we get
3x+5y=−6…(1)
5x−3y=24…(2)
Solve (1) and (2)
:3x(1)+5×(2) we get
34x=102⇒x=43
Substitute this value in (1) we get
9+5y=−6⇒y=
5
−15
=−3
Keen eye:
(i) ∣z
1
z
2
∣=∣z
1
∥z
2
∣
(ii)
∣
∣
∣
∣
∣
z
2
z
1
∣
∣
∣
∣
∣
=
∣z
2
∣
∣z
1
∣
, provided ∣z
2
∣
=0
(iii)
z
1
z
2
=
z
1
z
2
(iv)
z
1
±z
2
=
z
ˉ
1
±
z
ˉ
2
(v)
(
z
2
z
1
)
=
z
ˉ
2
z-1