If tan 2A = cot (A - 18°), Where 2A is acute, Find the value of A
↬Need Required Answer
Answers
Answered by
7
Given
Comparing Angles we get :-
Answered by
8
Answer:
Given tan2A = cot(A−18⁰)tan2A=cot(A−18⁰)
⇒ cot(90 - 2 A) = cot( A - {18}^{0} )⇒cot(90−2A)=cot(A−18
0
)
[∵tanθ=cot(90−θ)][∵tanθ=cot(90−θ)]
Comparing Angles we get :-
90 - 2A = A - 1890−2A=A−18
⇒90 + 18 = 2A + A⇒90+18=2A+A
⇒3A = 108⇒3A=108
⇒A = \frac{108}{3}⇒A=
3
108
⇒A = {36}^{o}⇒A=36
o
hope it's help u ❤️❤️
good morning❤️☺️ yrrr mana bg mi nahi download ki ha ma apna Face book ka pas bola giya hu ma abaaa global kheta hu yrrr agalaaa seson dekhta hu download karo
Similar questions