Physics, asked by mathsRSP, 7 months ago

\huge{\sf{\bf{\tt{\dfrac{d}{dx}\left(e^{2x}\right)}}}}

easy hard question !!

??

Answers

Answered by Anonymous
156

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large{\boxed{\bf{\dfrac{d}{dx}\left(e^{2x}\right)}}}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\bf{\dfrac{d}{dx}\left(e^{2x}\right)=e^{2x}\cdot \:2}}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ :

\Rightarrow \sf { Apply\:\: the \:\:chain\:\: rule:  \dfrac{d f(u)}{d x}=\dfrac{d f}{d u} \cdot \dfrac{d u}{d x}}

\sf{f=e^u,\:\:u=2x}

\sf{=\dfrac{d}{du}\left(e^u\right)\dfrac{d}{dx}\left(2x\right)}

\Rightarrow \sf{\dfrac{d}{du}\left(e^u\right)=e^u}

\sf{=e^u\dfrac{d}{dx}\left(2x\right)}

\sf{Substitute\:back\:u=2x}

\sf{=e^{2x}\dfrac{d}{dx}\left(2x\right)}

\Rightarrow \sf{\dfrac{d}{dx}\left(2x\right) = 2}

\huge{\boxed{\bf{=e^{2x}\cdot \:2}}}

Answered by XxMrGlamorousXx
0

Conflicts of Interest— In their manuscript(s), authors should disclose any ... However, for an direct form II IIR filter, this is not true.

Similar questions