Math, asked by Anonymous, 4 months ago

\huge \sf \color{blue}{\underline{\underline{Question}}}
Sum of two numbers is 15. if the sum of their reciprocal is 3/10, find the two numbers​

Answers

Answered by TheMist
38

\huge \sf \color{purple}{\underline{\underline{Answer}}} :

Two numbers are 5 and 10

\huge \sf \color{purple}{\underline{\underline{Solution}}}:

Let the number be x .

Then the other number is 15 - x.

\sf \color{brown}{Using \: the \: given \: information \: , we\: get }

\sf \frac{1}{x}+\frac{1}{15-x}=\frac{3}{10} \\ \\  \sf \frac{15-x+x}{x(15-x)}=\frac{3}{10} \\ \\ \sf \frac{15}{(15x-x²)}=\frac{3}{10}  \\ \\  \sf 150=45x-3x² \\ \\ \sf 3(x²-15+50)=0 \\\\ \sf x²-15+50=0 \\ \\ \sf x²-5x-10x+50 =0 \\ \\ \sf (x-10)(x-5)=0 \\ \\ \sf x-10=0 \: \: \ \ \ OR \ \ \ \  \sf x-5 \\ \\ \sf \boxed{ \colorbox{lightgreen}{x=10}} \ \ \ \ or \ \ \ \ \boxed{\colorbox{lightgreen}{  x = 5 }}\\ \\ \color{red}━━━━━━━━━━━━━━━━━━━━━━━━━

When x = 10 , then the other number is 15-5 = 10

When x = 5, then the other number is 15-5 = 10

\color{red}━━━━━━━━━━━━━━━━━━━━━━━━━

\\ \\ \sf \color{blue}{Hence, \ the \ two \ numbers \ are \ 5 \ and \ 10 }

\color{red}━━━━━━━━━━━━━━━━━━━━━━━━━\color{red}━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
5

AnswEr-:

  • \underline {\red{ \star {\mathrm { \:The\:two\:the\:numbers\:are\:10\:and\:5\:or\:5\:and\:10\:.}}}}\\

Explanation-:

\mathrm {\bf{ Given-:}}\\

  • The Sum of two numbers is 15.

  • If the sum of their reciprocal is 3/10,

\mathrm { \bf{To\:Find\;-:}}\\

  • The two numbers .

\sf{\bf{Solution \:of\:Question \:-:}}

\mathrm {\bf{ Let's \:Assume \;-:}}\\

  • The number be x .

Then Given That ,

  • Sum of two numbers is 15.

Then ,

  • The second number is 15 -x .

Therefore,

  •  \mathrm{\bf{\purple{The\:Number \:\: -:}}} \begin{cases} \sf{\blue{The\:First \:number \:\:is\:= \frak{x}}} & \\\\ \sf{\red{The\:Second \:number \:\:is \:=\:\frak{15-x}}}\end{cases} \\\\

  • Also , Given that ,

  • If the sum of their reciprocal is 3/10,

  •  \mathrm{\bf{\purple{Their\:Reciprocals\:\: -:}}} \begin{cases} \sf{\blue{The\:First \:number \:\:is\:= \frak{\dfrac{1}{x}}}} & \\\\ \sf{\red{The\:Second \:number \:\:is \:=\:\frak{\dfrac{1}{15-x}}}}\end{cases} \\\\

Then ,

  • There sum is 3/10

\underline{\bf{\sf{\star{According \:to\:Question \:-:}}}}

  • \longmapsto { \mathrm { \dfrac{1}{x} + \dfrac{1}{15-x}= \dfrac{3}{10} }}\\

  • \longmapsto { \mathrm { \dfrac{15-x + x }{x(15 -x)} = \dfrac{3}{10} }}\\

  • \longmapsto { \mathrm { \dfrac{15\cancel {-x }\cancel{+ x} }{x(15 -x)} = \dfrac{3}{10} }}\\

  • \longmapsto { \mathrm { \dfrac{15 }{x(15 -x)} = \dfrac{3}{10} }}\\

  • \mathrm {\bf{ By\:Cross \:Multiplication -:}}\\

  • \longmapsto { \mathrm { 15 \times 10 = 3 x(15 -x) }}\\

  • \longmapsto { \mathrm {  150 =45x - 3x^{2} }}\\

  • \longmapsto { \mathrm {  3x^{2} -45x + 150 =0 }}\\

\mathrm {Taking\:3\:as\:common\:in\:each\:Term-:}

  • \longmapsto { \mathrm {  3x^{2} -45x + 150 =0 }}\\

  • \longmapsto { \mathrm {  x^{2} -15x + 50 =0 }}\\

  • \longmapsto { \mathrm {  x^{2} -10x - 5x + 50 =0 }}\\

  • \longmapsto { \mathrm {  x(x - 10) -5 ( x - 10)  =0 }}\\

  • \pink{\underline{\boxed { \mathrm {  x \:= 10 \:, \:x = 5 \: }}}}\\

_____________________________________________________

When x = 5 -:

  •  \mathrm{\bf{\purple{Putting \:x=5\:\: -:}}} \begin{cases} \sf{\blue{The\:First \:number \:\:is\:= \frak{x= 5}}} & \\\\ \sf{\red{The\:Second \:number \:\:is \:=\:\frak{15-x= 15 - 5 = 10 }}}\end{cases} \\\\

Therefore,

  • \underline {\pink{ \star {\mathrm { When \: x= 5\:then\:the\:two\:the\:numbers\:are\:5\:and\:10.}}}}\\

__________________________________

  • When x = 10 -:

  •  \mathrm{\bf{\purple{Putting \:x=10\:\: -:}}} \begin{cases} \sf{\blue{The\:First \:number \:\:is\:= \frak{x= 10}}} & \\\\ \sf{\red{The\:Second \:number \:\:is \:=\:\frak{15-x= 15 - 10 = 5 }}}\end{cases} \\\\

Therefore,

  • \underline {\pink{ \star {\mathrm { When \: x= 10\:then\:the\:two\:the\:numbers\:are\:10\:and\:5.}}}}\\

__________________________________

  • \underline {\red{ \star {\mathrm { \:The\:two\:the\:numbers\:are\:10\:and\:5\:or\:5\:and\:10\:.}}}}\\

_______________________________________________________________

Similar questions