Math, asked by MaharashtraGirl, 1 month ago


 \huge \sf  \color{purple}\colorbox{red}{ }

can anyone pls solve this​

Attachments:

Answers

Answered by jaswasri2006
10

Each year no.of . sheeps increases by 8%

so ,

 \sf1 st \:  \:  \: year =(  \frac{8}{100}  \times 200 )+ 200  \\  \\  \sf = 16 + 200 = 216 \:  \: sheeps

 \\  \\

  • 1 st year = 216 sheeps

 \sf 2nd \:  \: year = 2( \frac{8}{100}  \times 200) + 200 \\  \\  \sf  = 32 + 200 = 232 \:  \: sheeps

 \\  \\

  • 2nd year = 232 sheeps

 \sf3rd \:  \: year \:  \:  = 3( \frac{8}{100}  \times 200) + 200 \\  \\  \sf = 48 + 200 = 248 \:  \: sheeps

 \\  \\

  • 3rd year = 248 sheeps

 \\  \\  \\

 \red{ \mathfrak{hope \:  \:  \:  \: this \:  \:  \: will \:  \:  \: help \:  \:  \: you}}

Answered by Anonymous
29

Answer:

 \bold \color{black}SOLUTION:-

Here, P = Present number of sheep's = 200

R = Increase in number of sheep's per

years%

N = 3 yrs

 \sf \: A=P(1+ \frac{R}{100})n \\  \\  \sf \: 200(1  + \frac{8}{100} )3 \\  \\  \sf \:200( \frac{100 + 8}{100} )3 \\  \\  \sf  \: 200( \frac{108}{100} ) \:  \:  \:  \frac{27}{25} \\  \\ \sf \: 200 ( \frac{27}{25} )3 \\  \\  \sf \:200  \times  \frac{27}{25} \times  \frac{27}{25} \times  \frac{27}{25}  \\  \\  \sf \: 8 \times 27   \times  \frac{27}{25} \times  \frac{27}{25}

  \sf= 251.9424 \\  \\   \sf= 252

 \sf { \therefore}The \:  \:  number \:  \:  of \:  \:  sheep's  \\  \sf \:  \: with  \:  \: the \:  \: \\  \:  \:   \sf \: sheeperd  \:  \: after  \:  \:  \\ \sf  \:  \: 2  \:  \: years \:  \:  would  \:  \: be  \:  \: 252 \:  \:  sheep's.

Similar questions